Abstract

With advances in additive manufacturing (AM), the technology has significantly increased the applications in a wide range of industrial sectors. For example, stereolithography (SLA) has become a promising candidate for the mass production of energy absorption architected cellular materials due to its capability to fabricate complex material designs with advantageous characteristics. As stereolithography is being applied in different industrial settings, uncertainties become a critical factor that influences the performance of the products. As a solution, uncertainty quantification (UQ) is needed to understand the impact of uncertainties on the overall performance variability of the design and inform decision-makers to enhance system robustness and reliability better. This paper presented a novel framework for accelerated uncertainty quantification based on integrating physics-based computational modeling and data-driven surrogate models. The high-fidelity finite element model can be built and validated based on experimental tests. With an adaptive sampling technique, the surrogate model can be built with fewer expensive simulation runs while achieving a desirable modeling accuracy, saving the computational cost. Then, uncertainty quantification can be conducted accordingly using the developed surrogate model, which provides insights for the design and manufacturing decision-making processes of the architected cellular materials utilizing the additive manufacturing technology.

References

1.
Monzón
,
M. D.
,
Ortega
,
Z.
,
Martínez
,
A.
, and
Ortega
,
F.
,
2015
, “
Standardization in Additive Manufacturing: Activities Carried Out by International Organizations and Projects
,”
Int. J. Adv. Manuf. Technol.
,
76
(
5–8
), pp.
1111
1121
.10.1007/s00170-014-6334-1
2.
Pagac
,
M.
,
Hajnys
,
J.
,
Ma
,
Q.-P.
,
Jancar
,
L.
,
Jansa
,
J.
,
Stefek
,
P.
, and
Mesicek
,
J.
,
2021
, “
A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing
,”
Polymers
,
13
(
4
), p.
598
.10.3390/polym13040598
3.
Regis
,
J. E.
,
Renteria
,
A.
,
Hall
,
S. E.
,
Hassan
,
M. S.
,
Marquez
,
C.
, and
Lin
,
Y.
,
2021
, “
Recent Trends and Innovation in Additive Manufacturing of Soft Functional Materials
,”
Materials
,
14
(
16
), p.
4521
.10.3390/ma14164521
4.
Weng
,
Z.
,
Zhou
,
Y.
,
Lin
,
W.
,
Senthil
,
T.
, and
Wu
,
L.
,
2016
, “
Structure-Property Relationship of Nano Enhanced Stereolithography Resin for Desktop SLA 3D Printer
,”
Composites, Part A
,
88
, pp.
234
242
.10.1016/j.compositesa.2016.05.035
5.
Chugunov
,
S.
,
Smirnov
,
A.
,
Kholodkova
,
A.
,
Tikhonov
,
A.
,
Dubinin
,
O.
, and
Shishkovsky
,
I.
,
2022
, “
Evaluation of Stereolithography-Based Additive Manufacturing Technology for BaTiO3 Ceramics at 465 nm
,”
Appl. Sci.
,
12
(
1
), p.
412
.10.3390/app12010412
6.
Zhao
,
W.
,
Wang
,
Z.
,
Zhang
,
J.
,
Wang
,
X.
,
Xu
,
Y.
,
Ding
,
N.
, and
Peng
,
Z.
,
2021
, “
Vat Photopolymerization 3D Printing of Advanced Soft Sensors and Actuators: From Architecture to Function
,”
Adv. Mater. Technol.
,
6
(
8
), p.
2001218
.10.1002/admt.202001218
7.
Lv
,
Q.
,
Huang
,
W.
,
Zheng
,
M.
,
Hu
,
Y.
,
Yan
,
C.
, and
Wang
,
J.
,
2022
, “
Understanding the Particle Effects and Interaction Effects of Crumb Rubber Modified Asphalt Regarding Bonding Properties
,”
Constr. Build. Mater.
,
348
, p.
128716
.10.1016/j.conbuildmat.2022.128716
8.
Mohsenizadeh
,
M.
,
Gasbarri
,
F.
,
Munther
,
M.
,
Beheshti
,
A.
, and
Davami
,
K.
,
2018
, “
Additively-Manufactured Lightweight Metamaterials for Energy Absorption
,”
Mater. Des.
,
139
, pp.
521
530
.10.1016/j.matdes.2017.11.037
9.
Dar
,
U. A.
,
Mian
,
H. H.
,
Abid
,
M.
,
Nutkani
,
M. B.
,
Jamil
,
A.
, and
Sheikh
,
M. Z.
,
2022
, “
Quasi-Static Compression and Deformation Behavior of Additively Manufactured Flexible Polymeric Lattice Structure
,”
J. Mater. Eng. Perform.
,
31
(
4
), pp.
3107
3119
.10.1007/s11665-021-06419-3
10.
Puzzo
,
D. P.
,
Arsenault
,
A. C.
,
Manners
,
I.
, and
Ozin
,
G. A.
,
2009
, “
Electroactive Inverse Opal: A Single Material for All Colors
,”
Angew. Chem.
,
121
(
5
), pp.
961
965
.10.1002/ange.200804391
11.
Armstrong
,
E.
, and
O'Dwyer
,
C.
,
2015
, “
Artificial Opal Photonic Crystals and Inverse Opal Structures–Fundamentals and Applications From Optics to Energy Storage
,”
J. Mater. Chem. C
,
3
(
24
), pp.
6109
6143
.10.1039/C5TC01083G
12.
do Rosário
,
J. J.
,
Berger
,
J. B.
,
Lilleodden
,
E. T.
,
McMeeking
,
R. M.
, and
Schneider
,
G. A.
,
2017
, “
The Stiffness and Strength of Metamaterials Based on the Inverse Opal Architecture
,”
Extreme Mech. Lett.
,
12
, pp.
86
96
.10.1016/j.eml.2016.07.006
13.
Waterhouse
,
G. I. N.
, and
Waterland
,
M. R.
,
2007
, “
Opal and Inverse Opal Photonic Crystals: Fabrication and Characterization
,”
Polyhedron
,
26
(
2
), pp.
356
368
.10.1016/j.poly.2006.06.024
14.
Stein
,
A.
,
Li
,
F.
, and
Denny
,
N. R.
,
2008
, “
Morphological Control in Colloidal Crystal Templating of Inverse Opals, Hierarchical Structures, and Shaped Particles
,”
Chem. Mater.
,
20
(
3
), pp.
649
666
.10.1021/cm702107n
15.
Lalegani Dezaki
,
M.
, and
Bodaghi
,
M.
,
2023
, “
A Review of Recent Manufacturing Technologies for Sustainable Soft Actuators
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
,
10
(
6
), pp.
1661
1710
.10.1007/s40684-023-00533-4
16.
Wang
,
K.
,
Pan
,
W.
,
Liu
,
Z.
,
Wallin
,
T. J.
,
van Dover
,
G.
,
Li
,
S.
,
Giannelis
,
E. P.
,
Menguc
,
Y.
, and
Shepherd
,
R. F.
,
2020
, “
3D Printing of Viscoelastic Suspensions Via Digital Light Synthesis for Tough Nanoparticle–Elastomer Composites
,”
Adv. Mater.
,
32
(
25
), p.
2001646
.10.1002/adma.202001646
17.
Liu
,
Z.
,
Pan
,
W.
,
Wang
,
K.
,
Matia
,
Y.
,
Xu
,
A.
,
Barreiros
,
J. A.
,
Darkes‐Burkey
,
C.
,
Giannelis
,
E. P.
,
Mengüç
,
Y.
,
Shepherd
,
R. F.
, and
Wallin
,
T. J.
,
2022
, “
Acoustophoretic Liquefaction for 3D Printing Ultrahigh‐Viscosity Nanoparticle Suspensions
,”
Adv. Mater.
,
34
(
7
), p.
2106183
.10.1002/adma.202106183
18.
de Pastre
,
M.-A.
,
Quinsat
,
Y.
, and
Lartigue
,
C.
,
2022
, “
Effects of Additive Manufacturing Processes on Part Defects and Properties: A Classification Review
,”
Int. J. Interact. Des. Manuf. (IJIDeM)
,
16
(
4
), pp.
1471
1496
.10.1007/s12008-022-00839-8
19.
Al-Maharma
,
A. Y.
,
Patil
,
S. P.
, and
Markert
,
B.
,
2020
, “
Effects of Porosity on the Mechanical Properties of Additively Manufactured Components: A Critical Review
,”
Mater. Res. Express
,
7
(
12
), p.
122001
.10.1088/2053-1591/abcc5d
20.
Nath
,
P.
,
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Multi-Level Uncertainty Quantification in Additive Manufacturing
,”
Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 7–9, pp.
922
937
.https://utw10945.utweb.utexas.edu/sites/default/files/2017/Manuscripts/MultiLevelUncertaintyQuantificationinAdditive.pdf
21.
Lopez
,
F.
,
Witherell
,
P.
, and
Lane
,
B.
,
2016
, “
Identifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models
,”
ASME J. Mech. Des.
,
138
(
11
), p.
114502
.10.1115/1.4034103
22.
Xu
,
Y.
,
Wu
,
H.
,
Liu
,
Z.
,
Wang
,
P.
, and
Li
,
Y.
,
2024
, “
Multi-Task Learning for Design Under Uncertainty With Multi-Fidelity Partially Observed Information
,”
ASME J. Mech. Des.
,
146
(
8
), p.
081704
.10.1115/1.4064492
23.
Zheng
,
Z.
,
Xu
,
Y.
, and
Wang
,
P.
,
2021
, “
Uncertainty Quantification Analysis on Mechanical Properties of the Structured Silicon Anode Via Surrogate Models
,”
J. Electrochem. Soc.
,
168
(
4
), p.
040508
.10.1149/1945-7111/abf182
24.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification and Management in Additive Manufacturing: Current Status, Needs, and Opportunities
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2855
2874
.10.1007/s00170-017-0703-5
25.
Jiang
,
Y.
, and
Niu
,
G.
,
2022
, “
An Iterative Frequency-Domain Envelope-Tracking Filter for Dispersive Signal Decomposition in Structural Health Monitoring
,”
Mech. Syst. Signal Process.
,
179
, p.
109329
.10.1016/j.ymssp.2022.109329
26.
Wu
,
J.
, and
Wang
,
P.
,
2020
, “
Risk-Averse Optimization for Resilience Enhancement Under Uncertainty
,”
ASME
Paper No. DETC2020-22226.10.1115/DETC2020-22226
27.
Hu
,
C.
,
Wang
,
P.
, and
Youn
,
B. D.
,
2014
, “
Advances in System Reliability Analysis Under Uncertainty
,”
Numerical Methods for Reliability and Safety Assessment: Multiscale and Multiphysics Systems
, Springer International Publishing, Cham, Switzerland, pp.
271
303
.
28.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification in Prediction of Material Properties During Additive Manufacturing
,”
Scr. Mater.
,
135
, pp.
135
140
.10.1016/j.scriptamat.2016.10.014
29.
Ye
,
J.
,
Mahmoudi
,
M.
,
Karayagiz
,
K.
,
Johnson
,
L.
,
Seede
,
R.
,
Karaman
,
I.
,
Arroyave
,
R.
, and
Elwany
,
A.
,
2022
, “
Bayesian Calibration of Multiple Coupled Simulation Models for Metal Additive Manufacturing: A Bayesian Network Approach
,”
ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
8
(
1
), p.
011111
.10.1115/1.4052270
30.
Forrester
,
A.
,
Sobester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
Wiley
, Chichester, UK.
31.
Bansal
,
P.
,
Zheng
,
Z.
,
Shao
,
C.
,
Li
,
J.
,
Banu
,
M.
,
Carlson
,
B. E.
, and
Li
,
Y.
,
2022
, “
Physics-Informed Machine Learning Assisted Uncertainty Quantification for the Corrosion of Dissimilar Material Joints
,”
Reliab. Eng. Syst. Saf.
,
227
, p.
108711
.10.1016/j.ress.2022.108711
32.
Jiang
,
Y.
,
Chen
,
Y.
, and
Wang
,
P.
,
2024
, “
An Iterative Adaptive Vold–Kalman Filter for Nonstationary Signal Decomposition in Mechatronic Transmission Fault Diagnosis Under Variable Speed Conditions
,”
IEEE Trans. Ind. Inf.
,
20
(
8
), pp.
10510
10519
.10.1109/TII.2024.3393536
33.
Bansal
,
P.
,
Zheng
,
Z.
, and
Li
,
Y.
,
2022
, “
Uncertainty Quantification for Dissimilar Material Joints Under Corrosion Environment
,”
ASME
Paper No. DETC2022-89654.10.1115/DETC2022-89654
34.
Jiang
,
J.
,
Xiong
,
Y.
,
Zhang
,
Z.
, and
Rosen
,
D. W.
,
2022
, “
Machine Learning Integrated Design for Additive Manufacturing
,”
J. Intell. Manuf.
,
33
(
4
), pp.
1073
1086
.10.1007/s10845-020-01715-6
35.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.10.1023/A:1008306431147
36.
Bichon
,
B. J.
,
Eldred
,
M. S.
,
Swiler
,
L. P.
,
Mahadevan
,
S.
, and
McFarland
,
J. M.
,
2008
, “
Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions
,”
AIAA J.
,
46
(
10
), pp.
2459
2468
.10.2514/1.34321
37.
Lee
,
T. H.
, and
Jung
,
J. J.
,
2008
, “
A Sampling Technique Enhancing Accuracy and Efficiency of Metamodel-Based RBDO: Constraint Boundary Sampling
,”
Comput. Struct.
,
86
(
13–14
), pp.
1463
1476
.10.1016/j.compstruc.2007.05.023
38.
Chen
,
Z.
,
Qiu
,
H.
,
Gao
,
L.
,
Li
,
X.
, and
Li
,
P.
,
2014
, “
A Local Adaptive Sampling Method for Reliability-Based Design Optimization Using Kriging Model
,”
Struct. Multidiscip. Optim.
,
49
(
3
), pp.
401
416
.10.1007/s00158-013-0988-4
39.
Chen
,
Z.
,
Peng
,
S.
,
Li
,
X.
,
Qiu
,
H.
,
Xiong
,
H.
,
Gao
,
L.
, and
Li
,
P.
,
2015
, “
An Important Boundary Sampling Method for Reliability-Based Design Optimization Using Kriging Model
,”
Struct. Multidiscip. Optim.
,
52
(
1
), pp.
55
70
.10.1007/s00158-014-1173-0
40.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.10.1016/j.strusafe.2011.01.002
41.
Wang
,
Z.
, and
Wang
,
P.
,
2014
, “
A Maximum Confidence Enhancement Based Sequential Sampling Scheme for Simulation-Based Design
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021006
.10.1115/1.4026033
42.
Mac
,
G.
,
Pearce
,
H.
,
Karri
,
R.
, and
Gupta
,
N.
,
2021
, “
Uncertainty Quantification in Dimensions Dataset of Additive Manufactured NIST Standard Test Artifact
,”
Data Brief
,
38
, p.
107286
.10.1016/j.dib.2021.107286
43.
Calò
,
S.
,
Chandler
,
J. H.
,
Campisano
,
F.
,
Obstein
,
K. L.
, and
Valdastri
,
P.
,
2020
, “
A Compression Valve for Sanitary Control of Fluid-Driven Actuators
,”
IEEE/ASME Trans. Mechatron.
,
25
(
2
), pp.
1005
1015
.10.1109/TMECH.2019.2960308
44.
Mohamed
,
M. G. A.
,
Kumar
,
H.
,
Wang
,
Z.
,
Martin
,
N.
,
Mills
,
B.
, and
Kim
,
K.
,
2019
, “
Rapid and Inexpensive Fabrication of Multi-Depth Microfluidic Device Using High-Resolution LCD Stereolithographic 3D Printing
,”
J. Manuf. Mater. Process.
,
3
(
1
), p.
26
.10.3390/jmmp3010026
45.
Agrawal
,
S.
, and
Dhande
,
S. G.
,
2008
, “
Analysis of Geometrical Error in the Stereolithography Process Using a Stochastic Approach
,”
Int. J. Prod. Res.
,
46
(
13
), pp.
3537
3562
.10.1080/00207540601055458
46.
Unkovskiy
,
A.
,
Schmidt
,
F.
,
Beuer
,
F.
,
Li
,
P.
,
Spintzyk
,
S.
, and
Kraemer Fernandez
,
P.
,
2021
, “
Stereolithography vs. direct Light Processing for Rapid Manufacturing of Complete Denture Bases: An In Vitro Accuracy Analysis
,”
J. Clin. Med.
,
10
(
5
), p.
1070
.10.3390/jcm10051070
47.
Mele
,
M.
, and
Campana
,
G.
,
2020
, “
An Experimental Approach to Manufacturability Assessment of Microfluidic Devices Produced by Stereolithography
,”
Proc. Inst. Mech. Eng., Part C
,
234
(
24
), pp.
4905
4916
.10.1177/0954406220932203
48.
Revilla-León
,
M.
,
Fry
,
E.
,
Supaphakorn
,
A.
,
Barmak
,
A. B.
, and
Kois
,
J. C.
,
2023
, “
Manufacturing Accuracy of the Intaglio Surface of Definitive Resin-Ceramic Crowns Fabricated at Different Print Orientations by Using a Stereolithography Printer
,”
J. Prosthet. Dent.
, In Press.10.1016/j.prosdent.2023.04.012
49.
McGrath
,
S.
,
Zhao
,
X.
,
Steele
,
R.
,
Thombs
,
B. D.
,
Benedetti
,
A.
,
Levis
,
B.
,
Riehm
,
K. E.
, et al.,
2020
, “
Estimating the Sample Mean and Standard Deviation From Commonly Reported Quantiles in Meta-Analysis
,”
Stat. Methods Med. Res.
,
29
(
9
), pp.
2520
2537
.10.1177/0962280219889080
50.
Formlabs
,
2024
, “
What Does Resolution Mean in 3d Printing?
,” Formlabs, Somerville, MA, accessed Oct. 8, 2024, https://formlabs.com/blog/3d-printer-resolution-meaning
51.
Unkovskiy
,
A.
,
Bui
,
P. H.-B.
,
Schille
,
C.
,
Geis-Gerstorfer
,
J.
,
Huettig
,
F.
, and
Spintzyk
,
S.
,
2018
, “
Objects Build Orientation, Positioning, and Curing Influence Dimensional Accuracy and Flexural Properties of Stereolithographically Printed Resin
,”
Dent. Mater.
,
34
(
12
), pp.
e324
e333
.10.1016/j.dental.2018.09.011
52.
Tahayeri
,
A.
,
Morgan
,
M.
,
Fugolin
,
A. P.
,
Bompolaki
,
D.
,
Athirasala
,
A.
,
Pfeifer
,
C. S.
,
Ferracane
,
J. L.
, and
Bertassoni
,
L. E.
,
2018
, “
3D Printed Versus Conventionally Cured Provisional Crown and Bridge Dental Materials
,”
Dent. Mater.
,
34
(
2
), pp.
192
200
.10.1016/j.dental.2017.10.003
53.
Xu
,
Y.
, and
Wang
,
P.
,
2021
, “
An Enhanced Squared Exponential Kernel With Manhattan Similarity Measure for High Dimensional Gaussian Process Models
,”
ASME
Paper No. DETC2021-71445.10.1115/DETC2021-71445
54.
Xu
,
Y.
, and
Wang
,
P.
,
2019
, “
A Comparison of Numerical Optimizers in Developing High Dimensional Surrogate Models
,”
ASME
Paper No. DETC2019-97499.10.1115/DETC2019-97499
55.
Bousquet
,
O.
,
von Luxburg
,
U.
, and
Rätsch
,
G.
,
2003
, “
Advanced Lectures on Machine Learning
,”
ML Summer Schools 2003
,
Springer
,
Canberra, Australia
, Tübingen, Germany, Aug 4–16, Vol.
3176
, p.
2011
.
56.
Xu
,
Y.
, and
Wang
,
P.
,
2023
, “
Sequential Sampling Based Asymptotic Probability Estimation for High Dimensional Rare Events
,”
ASME J. Mech. Des.
,
145
(
10
), p.
101701
.10.1115/1.4062790
57.
Xu
,
Y.
,
Renteria
,
A.
, and
Wang
,
P.
,
2022
, “
Adaptive Surrogate Models With Partially Observed Information
,”
Reliab. Eng. Syst. Saf.
,
225
, p.
108566
.10.1016/j.ress.2022.108566
58.
Xu
,
Y.
,
2023
, “
Developing Physics-Informed Machine Learning Models for Complex Engineering Systems Design
,”
Ph.D. thesis
,
University of Illinois at Urbana-Champaign
, Champaign, IL.https://hdl.handle.net/2142/121344
59.
Xu
,
Y.
, and
Wang
,
P.
,
2022
, “
Adaptive Surrogate Models for Uncertainty Quantification With Partially Observed Information
,”
AIAA
Paper No. 2022-1439.10.2514/6.2022-1439
You do not currently have access to this content.