Abstract

The organic coating-substrate structure suffers from corrosion reaction between the substrate material and water molecules during the storage stage. Multiphysics simulation is a promising tool for corrosion modeling and assessing the reliability of the organic coating-substrate structure. In this paper, a multistate modeling method is proposed toward the reliability modeling and assessment. First, to analyze the physicochemical process involved in the corrosion of organic coating-substrate structures, a multiphysics simulation method is developed. Then, the degradation performance of the organic coating-substrate structure is discretized into several states, and a Markov model is utilized to model the degradation process of the structure. The transition intensities of the Markov model are estimated by using the multiphysics simulation data. In the proposed method, the multiphysics simulation method can incorporate the diffusion equation and the kinetic equation of the corrosion, allowing for the simulation of water molecule diffusion within the organic coating and the coupling simulation of the metal corrosion process. Subsequently, the reliability of the organic coating-substrate structure is analyzed under varying temperatures, humidity levels, and protective material parameters. The result shows that higher ambient temperatures and relative humidity levels contribute to an accelerated corrosion rate of the substrate, and the reliability decreases.

References

1.
Mirzaee
,
M.
,
Rezaei Abadchi
,
M.
,
Fateh
,
A.
, and
Zolriasatein
,
A.
,
2022
, “
Investigation of Corrosion Properties of Modified Epoxy and Polyurethane Organic Coating on Steel Substrate
,”
Prog. Color, Color. Coat.
,
15
(
1
), pp.
25
36
.https://pccc.icrc.ac.ir/article_81741_5a9b0ce1e44cef228834e10d4f8fbb63.pdf
2.
Zhang
,
H.
,
Huang
,
X.
,
Tao
,
J.
,
Chen
,
X.
, and
Yang
,
L.
,
2023
, “
Corrosion Resistance and Mechanical Properties of Coating/Steel Substrate System in Acid Rain Environment
,”
J. Constr. Steel Res.
,
201
, p.
107740
.10.1016/j.jcsr.2022.107740
3.
Nazari
,
M. H.
,
Zhang
,
Y.
,
Mahmoodi
,
A.
,
Xu
,
G.
,
Yu
,
J.
,
Wu
,
J.
, and
Shi
,
X.
,
2022
, “
Nanocomposite Organic Coatings for Corrosion Protection of Metals: A Review of Recent Advances
,”
Prog. Org. Coat.
,
162
, p.
106573
.10.1016/j.porgcoat.2021.106573
4.
Wang
,
H.
,
Xu
,
J.
,
Du
,
X.
,
Wang
,
H.
,
Cheng
,
X.
, and
Du
,
Z.
,
2022
, “
Stretchable and Self-Healing Polyurethane Coating With Synergistic Anticorrosion Effect for the Corrosion Protection of Stainless Steels
,”
Prog. Org. Coat.
,
164
, p.
106672
.10.1016/j.porgcoat.2021.106672
5.
Vivekh
,
P.
,
Bui
,
D. T.
,
Islam
,
M. R.
,
Zaw
,
K.
, and
Chua
,
K. J.
,
2020
, “
Experimental Performance and Energy Efficiency Investigation of Composite Superabsorbent Polymer and Potassium Formate Coated Heat Exchangers
,”
Appl. Energy
,
275
, p.
115428
.10.1016/j.apenergy.2020.115428
6.
Guo
,
J.
,
Wan
,
J. L.
,
Yang
,
Y.
,
Dai
,
L.
,
Tang
,
A.
,
Huang
,
B.
,
Zhang
,
F.
, and
Li
,
H.
,
2023
, “
A Deep Feature Learning Method for Remaining Useful Life Prediction of Drilling Pumps
,”
Energy
,
282
, p.
128442
.10.1016/j.energy.2023.128442
7.
Huang
,
P.
,
Gu
,
Y.
,
Li
,
H.
,
Yazdi
,
M.
, and
Qiu
,
G.
,
2023
, “
An Optimal Tolerance Design Approach of Robot Manipulators for Positioning Accuracy Reliability
,”
Reliab. Eng. Syst. Saf.
,
237
, p.
109347
.10.1016/j.ress.2023.109347
8.
Liu
,
Z.
, and
Soares
,
C. G.
,
2023
, “
Sensitivity Analysis of the Cage Volume and Mooring Forces for a Gravity Cage Subjected to Current and Waves
,”
Ocean Eng.
,
287
, p.
115715
.10.1016/j.oceaneng.2023.115715
9.
Melchers
,
R. E.
,
2021
, “
New Insights From Probabilistic Modeling of Corrosion in Structural Reliability Analysis
,”
Struct. Saf.
,
88
, p.
102034
.10.1016/j.strusafe.2020.102034
10.
Zhang
,
H.
,
Ha
,
L.
,
Li
,
Q.
, and
Beer
,
M.
,
2017
, “
Imprecise Probability Analysis of Steel Structures Subject to Atmospheric Corrosion
,”
Struct. Saf.
,
67
, pp.
62
69
.10.1016/j.strusafe.2017.04.001
11.
Yuan
,
Y.
,
Liu
,
X.
,
Pu
,
G.
,
Wang
,
T.
, and
Guo
,
Q.
,
2021
, “
Corrosion Features and Time-Dependent Corrosion Model of Galfan Coating of High Strength Steel Wires
,”
Constr. Build. Mater.
,
313
, p.
125534
.10.1016/j.conbuildmat.2021.125534
12.
Zhang
,
B.
,
Yan
,
J.
,
Xu
,
W.
,
Zhang
,
Y.
,
Duan
,
J.
, and
Hou
,
B.
,
2022
, “
Robust, Scalable and Fluorine-Free Superhydrophobic Anti-Corrosion Coating With Shielding Functions in Marine Submerged and Atmospheric Zones
,”
Mater. Des.
,
223
, p.
111246
.10.1016/j.matdes.2022.111246
13.
Li
,
X.
,
Yan
,
J.
,
Yu
,
T.
, and
Zhang
,
B.
,
2022
, “
Versatile Nonfluorinated Superhydrophobic Coating With Self-Cleaning, Anti-Fouling, Anti-Corrosion and Mechanical Stability
,”
Colloids Surf., A
,
642
, p.
128701
.10.1016/j.colsurfa.2022.128701
14.
Huang
,
T.
,
Shao
,
Z.
,
Xiahou
,
T.
, and
Liu
,
Y.
,
2023
, “
An Evidential Network Approach to Reliability Assessment by Aggregating System‐Level Imprecise Knowledge
,”
Qual. Reliab. Eng. Int.
,
39
(
5
), pp.
1863
1877
.10.1002/qre.3319
15.
Li
,
Y. F.
,
Huang
,
H. Z.
,
Mi
,
J.
,
Peng
,
W.
, and
Han
,
X.
,
2022
, “
Reliability Analysis of Multi-State Systems With Common Cause Failures Based on Bayesian Network and Fuzzy Probability
,”
Ann. Oper. Res.
,
311
(
1
), pp.
195
209
.10.1007/s10479-019-03247-6
16.
Mi
,
J.
,
Lu
,
N.
,
Li
,
Y. F.
,
Huang
,
H. Z.
, and
Bai
,
L.
,
2022
, “
An Evidential Network-Based Hierarchical Method for System Reliability Analysis With Common Cause Failures and Mixed Uncertainties
,”
Reliab. Eng. Syst. Saf.
,
220
, p.
108295
.10.1016/j.ress.2021.108295
17.
Mi
,
J.
,
Li
,
Y. F.
,
Peng
,
W.
, and
Huang
,
H. Z.
,
2018
, “
Reliability Analysis of Complex Multi-State System With Common Cause Failure Based on Evidential Networks
,”
Reliab. Eng. Syst. Saf.
,
174
, pp.
71
81
.10.1016/j.ress.2018.02.021
18.
Olajire
,
A. A.
,
2018
, “
Recent Advances on Organic Coating System Technologies for Corrosion Protection of Offshore Metallic Structures
,”
J. Mol. Liq.
,
269
, pp.
572
606
.10.1016/j.molliq.2018.08.053
19.
Li
,
H.
,
Huang
,
C. G.
, and
Soares
,
C. G.
,
2022
, “
A Real-Time Inspection and Opportunistic Maintenance Strategies for Floating Offshore Wind Turbines
,”
Ocean Eng.
,
256
, p.
111433
.10.1016/j.oceaneng.2022.111433
20.
Li
,
H.
,
Soares
,
C. G.
, and
Huang
,
H. Z.
,
2020
, “
Reliability Analysis of a Floating Offshore Wind Turbine Using Bayesian Networks
,”
Ocean Eng.
,
217
, p.
107827
.10.1016/j.oceaneng.2020.107827
21.
Jacques
,
L. F. E.
,
2000
, “
Accelerated and Outdoor/Natural Exposure Testing of Coatings
,”
Prog. Polym. Sci.
,
25
(
9
), pp.
1337
1362
.10.1016/S0079-6700(00)00030-7
22.
Yin
,
B.
,
Wu
,
C.
,
Hou
,
D.
,
Li
,
S.
,
Jin
,
Z.
,
Wang
,
M.
, and
Wang
,
X.
,
2021
, “
Research and Application Progress of Nano-Modified Coating in Improving the Durability of Cement-Based Materials
,”
Prog. Org. Coat.
,
161
, p.
106529
.10.1016/j.porgcoat.2021.106529
23.
Kada
,
I.
,
Trinh
,
D.
,
Mallarino
,
S.
, and
Touzain
,
S.
,
2023
, “
Physical Ageing Effect on Water Uptake and Adhesion of Epoxy Coatings by EIS and the Blister Test
,”
Electrochim. Acta
,
454
, p.
142381
.10.1016/j.electacta.2023.142381
24.
Gislon
,
P.
, and
Prosini
,
P. P.
,
2011
, “
Devices for Producing Hydrogen Via NaBH4 and LiH Hydrolysis
,”
Int. J. Hydrogen Energy
,
36
(
1
), pp.
240
246
.10.1016/j.ijhydene.2010.09.052
25.
Guichard
,
J.
,
Bouyer
,
F.
,
Sciora
,
E.
,
Bernard
,
F.
,
Lecoq
,
H.
,
Besnard
,
R.
, and
Bellat
,
J. P.
,
2015
, “
Hydrolysis of Lithium Hydride Under Low Relative Humidity
,”
Int. J. Hydrogen Energy
,
40
(
37
), pp.
12736
12744
.10.1016/j.ijhydene.2015.07.047
26.
Perera
,
D. Y.
,
2002
, “
Effect of Thermal and Hygroscopic History on Physical Ageing of Organic Coatings
,”
Prog. Org. Coat.
,
44
(
1
), pp.
55
62
.10.1016/S0300-9440(01)00241-7
27.
Bauer
,
D. R.
,
2000
, “
Global Exposure Models for Automotive Coating Photo-Oxidation
,”
Polym. Degrad. Stab.
,
69
(
3
), pp.
297
306
.10.1016/S0141-3910(00)00073-2
28.
Prosini
,
P. P.
,
Cento
,
C.
, and
Gislon
,
P.
,
2010
, “
Steam Hydrolysis of Lithium Hydride
,”
Int. J. Green Energy
,
7
(
1
), pp.
103
115
.10.1080/15435070903501316
29.
Oury
,
A.
,
Namy
,
P.
,
Bellat
,
J. P.
,
Sciora
,
E.
, and
Besnard
,
R.
,
2017
, “
Modeling of the Lithium Hydride Hydrolysis Under Low Relative Humidity
,”
Int. J. Hydrogen Energy
,
42
(
33
), pp.
21105
21113
.10.1016/j.ijhydene.2017.06.182
30.
Dawson
,
P. R.
,
Needleman
,
A.
, and
Suresh
,
S.
,
1994
, “
Issues in the Finite Element Modeling of Polyphase Plasticity
,”
Mater. Sci. Eng.: A
,
175
(
1–2
), pp.
43
48
.10.1016/0921-5093(94)91043-X
31.
He
,
B.
,
Chu
,
S. S.
,
Qi
,
G.
, and
Sun
,
C. Q.
,
2014
, “
Finite Element Analysis of Coating-Matrix Interface Crack
,”
Appl. Mech. Mater.
,
684
, pp.
64
69
.10.4028/www.scientific.net/AMM.684.64
32.
Zhang
,
H.
,
Ju
,
S.
,
Xia
,
G.
, and
Yu
,
X.
,
2022
, “
Identifying the Positive Role of Lithium Hydride in Stabilizing Li Metal Anodes
,”
Sci. Adv.
,
8
(
3
), p.
eabl8245
.10.1126/sciadv.abl8245
33.
Wu
,
W.
,
Chen
,
Z.
,
Li
,
L.
, and
Pan
,
E.
,
2024
, “
A Novel Deep Time‐Index Framework With Limited Data and Feature Extraction for Battery Capacity Degradation Prediction
,”
Qual. Reliab. Eng. Int.
,
40
(
3
), pp.
1127
1147
.10.1002/qre.3459
34.
Wang
,
R.
, and
Feng
,
H.
,
2021
, “
Remaining Useful Life Prediction of Lithium‐Ion Battery Using a Novel Health Indicator
,”
Qual. Reliab. Eng. Int.
,
37
(
3
), pp.
1232
1243
.10.1002/qre.2792
35.
Ye
,
X.
,
Sun
,
Q.
,
Li
,
W.
, and
Zhai
,
G.
,
2023
, “
Life Prediction of Lithium Thionyl Chloride Batteries Based on the Pulse Load Test and Accelerated Degradation Test
,”
Qual. Reliab. Eng. Int.
,
39
(
8
), pp.
3335
3349
.10.1002/qre.3144
36.
Ke
,
Y.
,
Long
,
M.
,
Yang
,
F.
, and
Peng
,
W.
,
2024
, “
A Bayesian Deep Learning Pipeline for Lithium‐Ion Battery SOH Estimation With Uncertainty Quantification
,”
Qual. Reliab. Eng. Int.
,
40
(
1
), pp.
406
427
.10.1002/qre.3424
37.
Masias
,
A.
,
Marcicki
,
J.
, and
Paxton
,
W. A.
,
2021
, “
Opportunities and Challenges of Lithium-Ion Batteries in Automotive Applications
,”
ACS Energy Lett.
,
6
(
2
), pp.
621
630
.10.1021/acsenergylett.0c02584
38.
Bae
,
H.
, and
Kim
,
Y.
,
2021
, “
Technologies of Lithium Recycling From Waste Lithium-Ion Batteries: A Review
,”
Mater. Adv.
,
2
(
10
), pp.
3234
3250
.10.1039/D1MA00216C
39.
Zhu
,
J.
,
Wang
,
Y.
,
Huang
,
Y.
,
Bhushan Gopaluni
,
R.
,
Cao
,
Y.
,
Heere
,
M.
,
Mühlbauer
,
M. J.
,
Mereacre
,
L.
,
Dai
,
H.
, et al.,
2022
, “
Data-Driven Capacity Estimation of Commercial Lithium-Ion Batteries From Voltage Relaxation
,”
Nat. Commun.
,
13
(
1
), p.
2261
.10.1038/s41467-022-29837-w
40.
Singh
,
S.
,
Dash
,
P.
,
Silwal
,
S.
,
Feng
,
G.
,
Adeli
,
A.
, and
Moorhead
,
R. J.
,
2017
, “
Influence of Land Use and Land Cover on the Spatial Variability of Dissolved Organic Matter in Multiple Aquatic Environments
,”
Environ. Sci. Pollut. Res.
,
24
(
16
), pp.
14124
14141
.10.1007/s11356-017-8917-5
41.
Haas
,
C.
,
Paulus
,
S.
,
Maier
,
M.
,
Jochheim
,
H.
, and
Gerke
,
H. H.
,
2020
, “
Approach for Using Measured Soil Gas Diffusion Coefficients in Hydrus 1D With Examples From Forest Soils
,”
J. Plant Nutr. Soil Sci.
,
183
(
5
), pp.
562
566
.10.1002/jpln.202000147
42.
Wang
,
L.
,
Liu
,
F.
,
Cheng
,
J. J.
,
Zuo
,
Q.
, and
Chen
,
C. F.
,
2016
, “
Arrhenius-Type Constitutive Model for High Temperature Flow Stress in a Nickel-Based Corrosion-Resistant Alloy
,”
J. Mater. Eng. Perform.
,
25
(
4
), pp.
1394
1406
.10.1007/s11665-016-1986-7
43.
Jinghua
,
H.
,
2005
, “
Theoretical Study on the Reaction Mechanism of Lithium Metal and Lithium Hydride in Aqueous Atmosphere
,”
Dissertation
,
Sichuan Normal University
,
Chengdu, China
.
44.
Wu
,
J.
,
2022
,
Reliability Assessment for Organic Coating-Substrate With Failure Mechanism
,
University of Electronic Science and Technology
,
Chengdu, China
.
45.
Saxena
,
P.
, and
Gorji
,
N. E.
,
2019
, “
COMSOL Simulation of Heat Distribution in Perovskite Solar Cells: Coupled Optical-Electrical-Thermal 3-D Analysis
,”
IEEE J. Photovolt.
,
9
(
6
), pp.
1693
1698
.10.1109/JPHOTOV.2019.2940886
46.
Yassin
,
K. M.
,
Hassan
,
M. H.
,
Ghoneim
,
M. M.
,
Elkolil
,
M. S.
,
Alyan
,
A.
, and
Agamy
,
S. A.
,
2023
, “
Multiphysics Simulation of VVER-1200 Fuel Performance During Normal Operating Conditions
,”
Nucl. Sci. Tech.
,
34
(
2
), p.
28
.10.1007/s41365-023-01172-9
47.
Yazdi
,
M.
,
Mohammadpour
,
J.
,
Li
,
H.
,
Huang
,
H. Z.
,
Zarei
,
E.
,
Pirbalouti
,
R. G.
, and
Adumene
,
S.
,
2023
, “
Fault Tree Analysis Improvements: A Bibliometric Analysis and Literature Review
,”
Qual. Reliab. Eng. Int.
,
39
(
5
), pp.
1639
1659
.10.1002/qre.3271
48.
Li
,
H.
,
Díaz
,
H.
, and
Soares
,
C. G.
,
2021
, “
A Failure Analysis of Floating Offshore Wind Turbines Using AHP-FMEA Methodology
,”
Ocean Eng.
,
234
, p.
109261
.10.1016/j.oceaneng.2021.109261
49.
Li
,
H.
, and
Guedes Soares
,
C.
,
2022
, “
Assessment of Failure Rates and Reliability of Floating Offshore Wind Turbines
,”
Reliab. Eng. Syst. Saf.
,
228
, p.
108777
.10.1016/j.ress.2022.108777
50.
Peng
,
W.
,
Li
,
Y.-F.
,
Yang
,
Y.-J.
,
Mi
,
J.
, and
Huang
,
H.-Z.
,
2017
, “
Bayesian Degradation Analysis With Inverse Gaussian Process Models Under Time-Varying Degradation Rates
,”
IEEE Trans. Reliab.
,
66
(
1
), pp.
84
96
.10.1109/TR.2016.2635149
51.
Li
,
H.
,
Diaz
,
H.
, and
Soares
,
C. G.
,
2021
, “
A Developed Failure Mode and Effect Analysis for Floating Offshore Wind Turbine Support Structures
,”
Renewable Energy
,
164
, pp.
133
145
.10.1016/j.renene.2020.09.033
52.
Xiahou
,
T.
,
Liu
,
Y.
, and
Jiang
,
T.
,
2018
, “
Extended Composite Importance Measures for Multi-State Systems With Epistemic Uncertainty of State Assignment
,”
Mech. Syst. Signal Process.
,
109
, pp.
305
329
.10.1016/j.ymssp.2018.02.021
53.
Xiahou
,
T.
, and
Liu
,
Y.
,
2020
, “
Reliability Bounds for Multi-State Systems by Fusing Multiple Sources of Imprecise Information
,”
IISE Trans.
,
52
(
9
), pp.
1014
1031
.10.1080/24725854.2019.1680910
54.
Xiahou
,
T.
,
Zeng
,
Z.
,
Liu
,
Y.
, and
Huang
,
H.-Z.
,
2022
, “
Measuring Conflicts of Multisource Imprecise Information in Multistate System Reliability Assessment
,”
IEEE Trans. Reliab.
,
71
(
4
), pp.
1417
1434
.10.1109/TR.2021.3087531
You do not currently have access to this content.