Abstract

The degradation of metallic systems under cyclic loading is subject to significant uncertainty, which affects the reliability of residual lifetime predictions and subsequent decisions on optimum maintenance schedules. This paper focuses two main challenges in developing a reliable framework for the lifecycle management of fatigue-critical components: constructing a stochastic model that captures uncertainties in crack growth histories, and presenting a computationally efficient strategy for solving the stochastic optimization associated with maintenance scheduling. Polynomial chaos (PC) representation is proposed to propagate uncertainty in the fatigue-induced crack growth process, using a database from constant amplitude loading experiments. Additionally, an optimization strategy is implemented based on Gaussian process surrogate modeling to solve the stochastic optimization problem under maximum probability of failure constraints. The sensitivity of the optimum solution to different probability of failure thresholds is examined. The proposed framework offers a decision support tool for informed decision-making under uncertainty, aiming to mitigate fatigue failure.

References

1.
Frangopol
,
D. M.
,
2011
, “
Life-Cycle Performance, Management, and Optimisation of Structural Systems Under Uncertainty: Accomplishments and Challenges
,”
Struct. Infrastruct. Eng.
,
7
(
6
), pp.
389
413
.10.1080/15732471003594427
2.
Frangopol
,
D. M.
,
Kallen
,
M.-J.
, and
Noortwijk
,
J. M. V.
,
2004
, “
Probabilistic Models for Life-Cycle Performance of Deteriorating Structures: Review and Future Directions
,”
Prog. Struct. Eng. Mater.
,
6
(
4
), pp.
197
212
.10.1002/pse.180
3.
Ghonem
,
H.
, and
Dore
,
S.
,
1985
, “
Probabilistic Description of Fatigue Crack Growth in Polycrystalline Solids
,”
Eng. Fract. Mech.
,
21
(
6
), pp.
1151
1168
.10.1016/0013-7944(85)90174-2
4.
Ghonem
,
H.
,
1988
, “
Constant-Probability Crack Growth Curves
,”
Eng. Fract. Mech.
,
30
(
5
), pp.
685
699
.10.1016/0013-7944(88)90159-2
5.
Shimokawa
,
T.
, and
Hamaguchi
,
Y.
,
1985
, “
Relationship Between Fatigue Life Distribution, Notch Configuration, and SN Curve of a 2024-T4 Aluminum Alloy
,”
ASME J. Eng. Mater. Technol.
,
107
(
3
), pp.
214
220
.10.1115/1.3225804
6.
Ortiz
,
K.
, and
Kiremidjian
,
A. S.
,
1988
, “
Stochastic Modeling of Fatigue Crack Growth
,”
Eng. Fract. Mech.
,
29
(
3
), pp.
317
334
.10.1016/0013-7944(88)90020-3
7.
Paris
,
P.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
528
533
.10.1115/1.3656900
8.
Yang
,
J.
, and
Manning
,
S.
,
1996
, “
A Simple Second Order Approximation for Stochastic Crack Growth Analysis
,”
Eng. Fract. Mech.
,
53
(
5
), pp.
677
686
.10.1016/0013-7944(95)00130-1
9.
Kozin
,
F.
, and
Bogdanoff
,
J.
,
1981
, “
A Critical Analysis of Some Probabilistic Models of Fatigue Crack Growth
,”
Eng. Fract. Mech.
,
14
(
1
), pp.
59
89
.10.1016/0013-7944(81)90019-9
10.
Ghonem
,
H.
, and
Provan
,
J.
,
1980
, “
Micromechanics Theory of Fatigue Crack Initiation and Propagation
,”
Eng. Fract. Mech.
,
13
(
4
), pp.
963
977
.10.1016/0013-7944(80)90026-0
11.
Guida
,
M.
, and
Penta
,
F.
,
2015
, “
A Gamma Process Model for the Analysis of Fatigue Crack Growth Data
,”
Eng. Fract. Mech.
,
142
, pp.
21
49
.10.1016/j.engfracmech.2015.05.027
12.
Qiu
,
Z.
, and
Zheng
,
Y.
,
2017
, “
Fatigue Crack Growth Modeling and Prediction With Uncertainties Via Stochastic Perturbation Series Expansion Method
,”
Int. J. Mech. Sci.
,
134
, pp.
284
290
.10.1016/j.ijmecsci.2017.10.020
13.
Beck
,
A. T.
, and
de Santana Gomes
,
W. J.
,
2013
, “
Stochastic Fracture Mechanics Using Polynomial Chaos
,”
Probab. Eng. Mech.
,
34
, pp.
26
39
.10.1016/j.probengmech.2013.04.002
14.
Qiu
,
Z.
, and
Zhang
,
Z.
,
2020
, “
Fatigue Crack Propagation Analysis in Structures With Random Parameters Based on Polynomial Chaos Expansion Method
,”
Theor. Appl. Fract. Mech.
,
105
, p.
102404
.10.1016/j.tafmec.2019.102404
15.
Yang
,
D. Y.
, and
Frangopol
,
D. M.
,
2018
, “
Probabilistic Optimization Framework for Inspection/Repair Planning of Fatigue-Critical Details Using Dynamic Bayesian Networks
,”
Comput. Struct.
,
198
, pp.
40
50
.10.1016/j.compstruc.2018.01.006
16.
Long
,
X.
,
Jiang
,
C.
,
Liu
,
K.
,
Han
,
X.
,
Gao
,
W.
, and
Li
,
B.
,
2018
, “
An Interval Analysis Method for Fatigue Crack Growth Life Prediction With Uncertainty
,”
Comput. Struct.
,
210
, pp.
1
11
.10.1016/j.compstruc.2018.09.005
17.
Valdebenito
,
M.
, and
Schuëller
,
G.
,
2010
, “
Design of Maintenance Schedules for Fatigue-Prone Metallic Components Using Reliability-Based Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
33–36
), pp.
2305
2318
.10.1016/j.cma.2010.03.028
18.
Beaurepaire
,
P.
,
Valdebenito
,
M.
,
Schuëller
,
G.
, and
Jensen
,
H.
,
2012
, “
Reliability-Based Optimization of Maintenance Scheduling of Mechanical Components Under Fatigue
,”
Comput. Methods Appl. Mech. Eng.
,
221–222
, pp.
24
40
.10.1016/j.cma.2012.01.015
19.
Gomes
,
W. J.
, and
Beck
,
A. T.
,
2014
, “
Optimal Inspection Planning and Repair Under Random Crack Propagation
,”
Eng. Struct.
,
69
, pp.
285
296
.10.1016/j.engstruct.2014.03.021
20.
Arzaghi
,
E.
,
Abaei
,
M. M.
,
Abbassi
,
R.
,
Garaniya
,
V.
,
Chin
,
C.
, and
Khan
,
F.
,
2017
, “
Risk-Based Maintenance Planning of Subsea Pipelines Through Fatigue Crack Growth Monitoring
,”
Eng. Failure Anal.
,
79
, pp.
928
939
.10.1016/j.engfailanal.2017.06.003
21.
Ghonem
,
H.
,
1987
, “
Study of Probabilistic Fatigue Crack Growth and Associated Scatter Under Constant-and-Variable Amplitude Loading Spectrum
,” Annual Rept, 15.
22.
Virkler
,
D. A.
,
Hillberry
,
B.
, and
Goel
,
P.
,
1979
, “
The Statistical Nature of Fatigue Crack Propagation
,”
ASME J. Eng. Mater. Technol.
,
101
(
2
), pp.
148
153
.10.1115/1.3443666
23.
Schijve
,
J.
,
1994
, “
Fatigue Predictions and Scatter
,”
Fatigue Fract. Eng. Mater. Struct.
,
17
(
4
), pp.
381
396
.10.1111/j.1460-2695.1994.tb00239.x
24.
Ghosh
,
S.
, and
Henderson
,
S. G.
,
2003
, “
Behavior of the Norta Method for Correlated Random Vector Generation as the Dimension Increases
,”
ACM Trans. Model. Comput. Simul. (TOMACS)
,
13
(
3
), pp.
276
294
.10.1145/937332.937336
25.
Sakamoto
,
S.
, and
Ghanem
,
R.
,
2002
, “
Polynomial Chaos Decomposition for the Simulation of Non-Gaussian Nonstationary Stochastic Processes
,”
J. Eng. Mech.
,
128
(
2
), pp.
190
201
.10.1061/(ASCE)0733-9399(2002)128:2(190)
26.
Cameron
,
R. H.
, and
Martin
,
W. T.
,
1947
, “
The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals
,”
Ann. Math.
,
48
(
2
), pp.
385
392
.10.2307/1969178
27.
Le Maître
,
O.
, and
Knio
,
O. M.
,
2010
,
Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics
,
Springer Science & Business Media
,
Berlin, Germany
.
28.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.10.1137/S1064827501387826
29.
Das
,
S.
,
Ghanem
,
R.
, and
Finette
,
S.
,
2009
, “
Polynomial Chaos Representation of Spatio-Temporal Random Fields From Experimental Measurements
,”
J. Comput. Phys.
,
228
(
23
), pp.
8726
8751
.10.1016/j.jcp.2009.08.025
30.
Rosenblatt
,
M.
,
1952
, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
,
23
(
3
), pp.
470
472
.10.1214/aoms/1177729394
31.
Anderson
,
T. L.
,
2017
,
Fracture Mechanics: Fundamentals and Applications
,
CRC Press
,
Boca Raton, FL
.
32.
Rolfe
,
S. T.
, and
Barsom
,
J. M.
,
1977
,
Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics
,
ASTM International
,
West Conshohocken, PL
.
33.
Mishra
,
M.
,
Keshavarzzadeh
,
V.
, and
Noshadravan
,
A.
,
2019
, “
Reliability-Based Lifecycle Management for Corroding Pipelines
,”
Struct. Saf.
,
76
, pp.
1
14
.10.1016/j.strusafe.2018.06.007
34.
Frangopol
,
D. M.
,
Lin
,
K.-Y.
, and
Estes
,
A. C.
,
1997
, “
Life-Cycle Cost Design of Deteriorating Structures
,”
J. Struct. Eng.
,
123
(
10
), pp.
1390
1401
.10.1061/(ASCE)0733-9445(1997)123:10(1390)
35.
The MathWorks
,
2018
, “
MATLAB R2018b
,” The MathWorks, Natick, MA.
36.
Kotulski
,
Z. A.
,
1998
, “
On Efficiency of Identification of a Stochastic Crack Propagation Model Based on Virkler Experimental Data
,”
Arch. Mech.
,
50
(
5
), pp.
829
847
.https://www.researchgate.net/publication/228790283_On_efficiency_of_identification_of_a_stochastic_crack_propagation_model_based_on_Virkler_experimental_data
37.
Ray
,
A.
,
Tangirala
,
S.
, and
Phoha
,
S.
,
1998
, “
Stochastic Modeling of Fatigue Crack Propagation
,”
Appl. Math. Modell.
,
22
(
3
), pp.
197
204
.10.1016/S0307-904X(98)00013-4
38.
Grasso
,
M.
,
Penta
,
F.
,
Pinto
,
P.
, and
Pucillo
,
G.
,
2013
, “
A Four-Parameters Model for Fatigue Crack Growth Data Analysis
,”
Fratt. Integr. Strutt.
,
7
(
26
), pp.
69
79
.10.3221/IGF-ESIS.26.08
39.
Schütz
,
W.
,
1980
, “
Treatment of Scatter of Fracture Toughness Data for Design Purposes
,” Practical Applications of Fracture Mechanics, H. Liebowitz, eds., Advisory Group for Aerospace Research and Development, NATO, Brussels, Belgium.
40.
Proppe
,
C.
,
2003
, “
Probabilistic Analysis of Multi-Site Damage in Aircraft Fuselages
,”
Comput. Mech.
,
30
(
4
), pp.
323
329
.10.1007/s00466-002-0408-x
41.
Virkler
,
D.
,
Hillberry
,
B.
, and
Goel
,
P.
,
1978
, “
The Statistical Nature of Fatigue Crack Propagation
,” Air Force Flight Dynamics Laboratory, Air Force Research Laboratory, WPAFB, Report No.
AFFDLTR 78–43
.https://apps.dtic.mil/sti/pdfs/ADA056912.pdf
42.
Loghin
,
A.
, and
Ismonov
,
S.
,
2022
, “
3D FEA Based Surrogate Modeling in Fatigue Crack Growth Life Assessment
,”
Procedia Struct. Integr.
,
38
, pp.
331
341
.10.1016/j.prostr.2022.03.034
43.
Abbasi
,
A.
,
Nazari
,
F.
, and
Nataraj
,
C.
,
2020
, “
Application of Long Short-Term Memory Neural Network to Crack Propagation Prognostics
,” 2020 IEEE International Conference on Prognostics and Health Management (
ICPHM
), Detroit, MI, June 8–10, pp.
1
6
.10.1109/ICPHM49022.2020.9187033
44.
Dean
,
S. W.
,
Cross
,
R. J.
,
Makeev
,
A.
, and
Armanios
,
E.
,
2006
, “
A Comparison of Predictions From Probabilistic Crack Growth Models Inferred From Virkler's Data
,”
J. ASTM Int.
,
3
(
10
), p.
100574
.10.1520/JAI100574
45.
Lin
,
Y.-H.
,
Ding
,
Z.-Q.
, and
Zio
,
E.
,
2019
, “
Fatigue Crack Growth Assessment Method Subject to Model Uncertainty
,”
Eng. Fract. Mech.
,
219
, p.
106624
.10.1016/j.engfracmech.2019.106624
46.
Ríos Goytre
,
J. I.
,
2019
, “
Exploration of Surrogate Models for Remaining Useful Life Estimation
,”
Master's thesis
, Comillas Universidad Pontificia, Madrid, Spain.http://hdl.handle.net/11531/36389
47.
Pais
,
M. J.
,
Viana
,
F. A.
, and
Kim
,
N. H.
,
2012
, “
Enabling High-Order Integration of Fatigue Crack Growth With Surrogate Modeling
,”
Int. J. Fatigue
,
43
, pp.
150
159
.10.1016/j.ijfatigue.2012.03.010
48.
Williams
,
C. K.
, and
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
You do not currently have access to this content.