Abstract

The Master Curve (MC) methodology is a well-known approach utilized to characterize the ductile-to-brittle transition region (DBTR) of ferritic–pearlitic steels. This methodology was initially standardized in ASTM E1921 in 1997 and has undergone continuous evolution and improvement since its origin. However, the validity criterion for the crack aspect ratio (0.45 ≤ a0/W ≤ 0.55) has remained unchanged since its inception. It is worth noting that this criterion was originally established in accordance with standard ASTM E399, which characterizes fracture conditions under linear-elastic plane strain conditions, apparently for historical precedents rather than any scientific rationale. Furthermore, ASTM E1820, which is employed to characterize the fracture behavior of metallic materials in elastic–plastic conditions, permits a maximum crack length-to-width ratio of 0.70. In this context and considering that ASTM E1921 measures KJc (elastic–plastic) values of the fracture toughness, our research seeks to empirically demonstrate that the crack length-to-width criteria established in ASTM E1921 can be increased up to 0.60, without compromising the accuracy of the reference temperature calculations, at least for the specific datasets used in this work. Such a correction would offer significant advantages, especially when dealing with mini-C(T) specimens. Their subsize dimensions may result in the discarding of numerous specimens that could otherwise be effectively employed for reference temperature calculations. More research is recommended to provide additional validation of the crack aspect ratio upper limit proposed here, and even to explore the possibility of further extensions.

References

1.
Shah
,
V. N.
, and
MacDonald
,
P. E.
,
1993
,
Aging and Life Extension of Major Light Water Reactor Components
, 1st ed.,
Elsevier Science
,
New York
.
2.
Wallin
,
K.
,
1984
, “
The Scatter in KIC-Results
,”
Eng. Fract. Mech.
,
19
(
6
), pp.
1085
1093
.10.1016/0013-7944(84)90153-X
3.
Wallin
,
K.
,
1985
, “
The Size Effect in KIC Results
,”
Eng. Fract. Mech.
,
22
(
1
), pp.
149
163
.10.1016/0013-7944(85)90167-5
4.
Wallin
,
K.
,
1999
, “
The Master Curve Method: A New Concept for Brittle Fracture
,”
Int. J. Mater. Prod. Technol.
,
14
(
2/3/4
), p.
342
.10.1504/IJMPT.1999.036276
5.
ASTM International
,
2021
, “
Standard Test Method for Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range
,”
ASTM International
, West Conshohocken, PA, Standard No.
ASTM E1921-21
.https://www.astm.org/e1921-23.html
6.
Wallin
,
K.
,
1993
, “
Irradiation Damage Effects on the Fracture Toughness Transition Curve Shape for Reactor Pressure Vessel Steels
,”
Int. J. Pressure Vessels Piping
,
55
(
1
), pp.
61
79
.10.1016/0308-0161(93)90047-W
7.
Miura
,
N.
, and
Soneda
,
N.
,
2010
, “
Evaluation of Fracture Toughness by Master Curve Approach Using Miniature C(T) Specimens
,”
ASME
Paper No. PVP2010-25862.10.1115/PVP2010-25862
8.
Yamamoto
,
M.
,
Kimura
,
A.
,
Onizawa
,
K.
,
Yoshimoto
,
K.
,
Ogawa
,
T.
,
Mabuchi
,
Y.
,
Viehrig
,
H.-W.
,
Miura
,
N.
, and
Soneda
,
N.
,
2014
, “
A Round Robin Program of Master Curve Evaluation Using Miniature C(T) Specimens: 3rd Report—Comparison of T0 Under Various Selections of Temperature Conditions
,”
ASME
Paper No. PVP2014-28898.10.1115/PVP2014-28898
9.
Sánchez
,
M.
,
Cicero
,
S.
,
Kirk
,
M.
,
Altstadt
,
E.
,
Server
,
W.
, and
Yamamoto
,
M.
,
2023
, “
Using Mini-C(T) Specimens for the Fracture Characterization of Ferritic Steels Within the Ductile to Brittle Transition Range: A Review
,”
Metals
,
13
(
1
), p.
176
.10.3390/met13010176
10.
Cicero
,
S.
,
Lambrecht
,
M.
,
Swan
,
H.
,
Arffman
,
P.
,
Altstadt
,
E.
,
Petit
,
T.
,
Obermeier
,
F.
,
Arroyo
,
B.
,
Álvarez
,
J. A.
, and
Lacalle
,
R.
,
2020
, “
Fracture Mechanics Testing of Irradiated RPV Steels by Means of Sub-Sized Specimens: FRACTESUS Project
,”
Procedia Struct. Integr.
,
28
, pp.
61
66
.10.1016/j.prostr.2020.10.008
11.
ASTM International
,
2022
, “
Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Material
,”
ASTM International
, West Conshohocken, PA, Standard No.
ASTM E399-22
.https://cdn.standards.iteh.ai/samples/112806/b586dccbd5764a10a5c5720781607a6e/ASTM-E399-22.pdf
12.
ASTM International
,
2015
, “
Standard Test Method for Measurement of Fracture Toughness
,”
ASTM International
, West Conshohocken, PA, Standard No. ASTM E1820-15.
13.
European Committee for Standardization
, 2020, “
Productos laminados en caliente de aceros para estructuras. Parte 4: Condiciones técnicas de suministro de los aceros estructurales soldables de grano fino laminados termomecánicamente
,” Madrid, Spain, Standard No. UNE-EN 10025-4:2020.
14.
Cicero
,
S.
,
García
,
T.
, and
Madrazo
,
V.
,
2015
, “
Application and Validation of the Notch Master Curve in Medium and High Strength Structural Steels
,”
J. Mech. Sci. Technol.
,
29
(
10
), pp.
4129
4142
.10.1007/s12206-015-0907-2
15.
European Committee for Standardization,
2023
, “
Productos laminados en caliente de aceros para estructuras. Parte 6: Condiciones técnicas de suministro de los productos planos de aceros estructurales de alto límite elástico en la condición de templado y revenido
,” Madrid, Spain, Standard No. UNE‐EN 10025‐6:2020+A1.
16.
Serrano
,
M.
, and
Lapeña
,
J.
,
1997
, “
Caracterizacion de los aceros SA 533 grado B clase 1 y SA 508 Clase 3 de a tapa de la vasija de la CN jose cabrera
,” CIEMAT Report No. DFN/ME-18/IE-97.
17.
Hernandez
,
R.
,
Serrano
,
M.
,
Plaza
,
D.
,
Plaza
,
F.
, and
Muñoz
,
A.
,
2018
, “
Impact and Tensile Tests of Zorita Head Flange
,” CIEMAT Report No. DT/MXE-18/II-25.
18.
Sánchez
,
M.
,
Cicero
,
S.
,
Arroyo
,
B.
,
Bonny
,
G.
,
Swan
,
H.
,
Lappalainen
,
P.
,
Altstadt
,
E.
,
Petit
,
T.
, and
Obermeier
,
F.
,
2023
, “
FRACTESUS Project Overview: Objectives, Organisation and Initial Findings
,”
Procedia Struct. Integr.
,
47
, pp.
22
29
.10.1016/j.prostr.2023.06.034
19.
SOTERIA
, 2019, “
SOTERIA: Safe Long-Term Operation of Light Water Reactors Based on Improved Understanding of Radiation Effects H2020 Grant Agreement ID: 661913, 2015–2019
,”.
20.
Wallin
,
K.
,
2002
, “
Master Curve Analysis of the ‘Euro’ Fracture Toughness Dataset
,”
Eng. Fract. Mech.
,
69
(
4
), pp.
451
481
.10.1016/S0013-7944(01)00071-6
21.
Yamamoto
,
M.
, and
Miura
,
N.
,
2015
, “
Applicability of Miniature C(T) Specimens for the Master Curve Evaluation of RPV Weld Metal
,”
ASME
Paper No. PVP2015-45545.10.1115/PVP2015-45545
22.
Yamamoto
,
M.
,
Kimura
,
A.
,
Onizawa
,
K.
,
Yoshimoto
,
K.
,
Ogawa
,
T.
, and
Chiba
,
A.
, Hirano, T.,
2012
, “
A Round Robin Program of Master Curve Evaluation Using Miniature C(T) Specimens: First Round Robin Test on Uniform Specimens of Reactor Pressure Vessel Material
,”
ASME
Paper No. PVP2012-78661.10.1115/PVP2012-78661
23.
IAEA
, 2005, “
Application of Surveillance Programme Results to Reactor Pressure Vessel Integrity Assessment. Results of a Coordinated Research Project 2000–2004
,” International Atomic Energy Agency, Vienna, Austria, Report No.
IAEA-TECDOC-1435
.https://www-pub.iaea.org/MTCD/Publications/PDF/te_1435_web.pdf
You do not currently have access to this content.