Abstract

The S–N equation is one of the most important equations in fatigue model investigation. A majority of fatigue models, including multi-axial fatigue model and mean effect models, are established on the basis of the S–N equation. Obviously, an accuracy of the S–N equation is very important. Taking into account that the S–N equation is, in fact, an empirical one in which the material constants are determined by numerical fitting fatigue experimental data, in this study, the S–N equation can be improved, by further processing these fatigue experimental data, to present a new type of S–N equation that is more accurate than the S–N equation. The new type of S–N equation is called a similar S–N equation in this study. By using a large number of experimental data of metallic materials reported in the literature, an accuracy of the similar S–N equation has been proven.

References

1.
Liu
,
B. W.
, and
Yan
,
X. Q.
,
2019
, “
A New Model of Multiaxial Fatigue Life Prediction With Influence of Different Mean Stresses
,”
Int. J. Damage Mech.
,
28
(
9
), pp.
1323
1343
.10.1177/1056789518824396
2.
Liu
,
B. W.
, and
Yan
,
X. Q.
,
2020
, “
A Multi-Axial Fatigue Limit Prediction Equation for Metallic Materials
,”
ASME J. Pressure Vessel Technol.
,
142
(
3
), p.
034501
.10.1115/1.4046217
3.
Susmel
,
L.
,
2009
,
Multiaxial Notch Fatigue, From Nominal to Stress/Strain Quantities
,
Woodhead Publishing Limited, CRC Press
,
Boca Raton, FL
.
4.
Gough
,
H. J.
,
1949
, “
Engineering Steels Under Combined Cyclic and Static Stresses
,”
Proc. Inst. Mech. Eng.
,
160
(
1
), pp.
417
440
.10.1243/PIME_PROC_1949_160_040_02
5.
Nishihara
,
T.
, and
Kawamoto
,
M.
,
1941
, “
The Strength of Metals Under Combined Alternating Bending and Torsion
,”
Mem. Coll. Eng., Kyoto Imp. Univ.
,
10
, pp.
177
201
.10.1299/KIKAI1938.7.29-1_85
6.
Kitaioka
,
S.
,
Chen
,
J.
, and
Seika
,
M.
,
1986
, “
The Threshold of Micro Crack Propagation Under Mixed Mode
,”
Bull. Jpn. Soc. Mech. Eng.
,
29
, pp.
214
237
.10.1299/jsme1958.29.651
7.
Frith
,
P. H.
,
1956
, “
Fatigue of Wrought High-Tensile Alloy Steel
,”
Proceedings of the Institution of Mechanical Engineers
, pp.
462
499
.
8.
Nishihara
,
T.
, and
Kawamoto
,
M.
,
1945
, “
The Strength of Metals Under Combined Alternating Bending and Torsion With Phase Difference
,”
Mem. Coll. Eng., Kyoto Imp. Univ.
,
11
, pp.
85
112
.https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/280193/1/mcekiu_11_5_85.pdf
9.
Achtelik
,
H.
,
Jakubowska
,
I.
, and
Macha
,
E.
,
1983
, “
Actual and Estimated Directions of Fatigue Fracture Plane in ZI250 Grey Cast Iron Under Combined Alternating Bending and Torsion
,”
Stud. Geotech. Mech.
,
5
(
2
), pp.
9
30
.
10.
Lempp
,
W.
,
1977
, “
Festigkeitsverhalten Von Stählen Bei Mehrachsiger Dauerschwingbeanspruchung Durch Normalspannungen Mit Überlagerten Phasengleichen Und Phasenverschobenen Schubspannungen
,” Dissertation,
Universität Stuttgart
,
Germany
.
11.
Zenner
,
H.
,
Heidenreich
,
R.
, and
Richter
,
I.
,
1985
, “
Dauerschwingfestigkeit Bei Nichtsynchroner Mehrachsiger Beanspruchung
,”
Z. Werkstofftech.
,
16
, pp.
101
112
.10.1002/mawe.19850160310
12.
Froeschl
,
J.
,
Gerstmayr
,
G.
,
Eichlseder
,
W.
, and
Leitner
,
H.
,
2007
, “
Multiaxial Fatigue of qt-Steels: New Fatigue Strength Criterion for Anisotropic Material Behaviour
,”
Proceedings of 8th International Conference on Multiaxial Fatigue and Fracture
,
Sheffield, UK
, Paper No. S3-1.
13.
Matake
,
T.
,
1977
, “
An Explanation on Fatigue Limit Under Combined Stress
,”
Bull. JSME
,
20
(
141
), pp.
257
263
.10.1299/jsme1958.20.257
14.
Altenbach
,
H.
, and
Zolochevsky
,
A.
,
1996
, “
A Generalised Fatigue Limit Criterion and a Unified Theory of Low-Cycle Fatigue Damage
,”
Fatigue Fract. Eng. Mater. Struct.
,
19
(
10
), pp.
1207
1219
.10.1111/j.1460-2695.1996.tb00944.x
15.
Findley
,
W. N.
,
Coleman
,
J. J.
, and
Hanley
,
B. C.
,
1956
, “
Theory for Combined Bending and Torsion Fatigue With Data for SAE 4340 Steel
,”
Proceedings of International Conference on Fatigue of Metals
,
Institution of Mechanical Engineers
,
London
, UK, Sept. 10–14, pp.
150
157
.https://www.semanticscholar.org/paper/THEORY-FORCOMBINED-BENDING-AND-TORSION-FATIGUE-FOR-Findley-Coleman/0ff6a6dace6bbdf3ed2fe9f3f980fc7a9c3974ce
16.
Froustey
,
C.
,
1986
, “
Fatigue Multiaxiale en Endurance de L'acier 30NCD16
,” Ph.D. thesis,
Ecole Nationale Supérieure d'Arts et Métiers
,
Bordeaux, France
.
17.
Froustey
,
C.
, and
Lasserre
,
S.
,
1989
, “
Multiaxial Fatigue Endurance of 30NCD16 Steel
,”
Int. J. Fatigue
,
11
(
3
), pp.
169
175
.10.1016/0142-1123(89)90436-2
18.
Froustey
,
C.
,
Lasserre
,
S.
, and
Dubar
,
L.
,
1992
, “
Essais de Fatigue Multiaxiaux et Par Blocs. Validation D'un Critère Pour Les Matériaux Métalliques
,”
Proceedings of METTECH 92
,
Grenoble, France
.
19.
Fogué
,
M.
, and
Bahuaud
,
J.
,
1985
, “
Fatigue Multiaxiale à Durée de Vie Illimitée
,”
Proceedings of Comptes Rendus 7ème Congrès Français de Mécanique
,
Bordeaux, France
, pp.
30
31
.
20.
Delahay
,
T.
, and
Palin-Luc
,
T.
,
2005
, “
Estimation of the Fatigue Strength Distribution in High-Cycle Multiaxial Fatigue Taking Into Account the Stress–Strain Gradient Effect
,”
Int. J. Fatigue
,
28
(
5–6
), pp.
474
484
.10.1016/j.ijfatigue.2005.06.048
21.
Palin-Luc
,
T.
, and
Lasserre
,
S.
,
1998
, “
An Energy Based Criterion for High Cycle Multiaxial Fatigue
,”
Eur. J. Mech.-A/Solids
,
17
(
2
), pp.
237
251
.10.1016/S0997-7538(98)80084-3
22.
Sonsino
,
C. M.
,
2001
, “
Influence of Load and Deformation-Controlled Multiaxial Tests on Fatigue Life to Crack Initiation
,”
Int. J. Fatigue
,
23
(
2
), pp.
159
167
.10.1016/S0142-1123(00)00079-7
23.
Akrache
,
R.
, and
Lu
,
J.
,
1999
, “
Three-Dimensional Calculations of High Cycle Fatigue Life Under Out-of-Phase Multiaxial Loading
,”
Fatigue Fract. Eng. Mater. Struct.
,
22
(
6
), pp.
527
534
.10.1046/j.1460-2695.1999.00172.x
24.
Gough
,
H. J.
,
Pollard
,
H. V.
, and
Clenshaw
,
W. J.
,
1951
,
Some Experiments on the Resistance of Metals to Fatigue Under Combined Stresses
(Aeronautical Research Council, R and, M),
HMSO
,
London
, UK, p.
2522
.
25.
Li
,
B. C.
,
Jiang
,
C.
,
Han
,
X.
, and
Li
,
Y.
,
2015
, “
A New Approach of Fatigue Life Prediction for Metallic Materials Under Multiaxial Loading
,”
Int. J. Fatigue
,
78
, pp.
1
10
.10.1016/j.ijfatigue.2015.02.022
26.
Shamsaei
,
N.
,
Fatemi
,
A.
, and
Socie
,
D. F.
,
2011
, “
Multiaxial Fatigue: An Overview and Same Approximation Models for Life Estimation
,”
Int. J. Fatigue
,
33
, pp.
948
958
.10.1016/j.ijfatigue.2011.01.003
27.
Crossland
,
B.
,
1956
, “
Effect of Large Hydrostatic Pressures on the Torsional Fatigue Strength of an Alloy Steel
,”
Proceedings of the International Conference on Fatigue of Metals
,
The Institution of Mechanical Engineers
,
London
, UK, pp.
138
–1
49
.
28.
Sines
,
G.
,
Waisman
,
J. L.
, and
Dolan
,
T. J.
,
1959
,
Metal Fatigue
,
McGraw-Hill
,
New York
.
29.
Papadopoulos
,
I. V.
,
Davoli
,
P.
,
Gorla
,
C.
,
Filippini
,
M.
, and
Bernasconi
,
A.
,
1997
, “
A Comparative Study of Multiaxial High-Cycle Fatigue Criteria for Metals
,”
Int. J. Fatigue
,
19
, pp.
219
235
.10.1016/S0142-1123(96)00064-3
30.
Papadopoulos
,
I. V.
,
2001
, “
Long Life Fatigue Under Multiaxial Loading
,”
Int. J. Fatigue
,
23
(
10
), pp.
839
849
.10.1016/S0142-1123(01)00059-7
31.
Gough
,
H. J.
, and
Pollard
,
H. V.
,
1937
, “
Properties of Some Materials for Cast Crankshafts, With Special Reference to Combined Alternating Stresses
,”
Proc. Inst. Automob. Eng.
,
31
, pp.
821
893
.
32.
Gough
,
H. J.
, and
Pollard
,
H. V.
,
1935
, “
The Strength of Metals Under Combined Alternating Stress
,”
Proc. Inst. Mech. Eng.
,
131
, pp.
3
18
.10.1243/PIME_PROC_1935_131_008_02
33.
Verreman
,
Y.
, and
Guo
,
H.
,
2007
, “
High-Cycle Fatigue Mechanisms in 1045 Steel Under Non-Proportional Axial-Torsional Loading
,”
Fatigue Fract. Eng. Mater. Struct.
,
30
(
10
), pp.
932
946
.10.1111/j.1460-2695.2007.01164.x
34.
Kardas
,
D.
,
Kluger
,
K.
,
Łagoda
,
T.
, and
Ogonowski
,
P.
,
2004
, “
Fatigue Life of AlCu4Mg1 Aluminium Alloy Under Constant Amplitude Bending With Torsion
,”
Proceedings of 7th International Conference on Biaxial and Multiaxial Fatigue and Fracture
,
Berlin, Germany
, June 28–30, pp.
185
190
.
35.
Lee
,
S. B.
,
1985
, “
A Criterion for Fully Reversed Out-of-Phase Torsion and Bending
,”
Multiaxial Fatigue
,
K. J.
Miller
, and
M. W.
Brown
, eds.,
ASTM STP
,
West Conshohocken, PA
, Vol.
853
, pp.
553
568
.
36.
Chaudonneret
,
M.
,
1993
, “
A Simple and Efficient Multiaxial Fatigue Damage Model for Engineering Applications of Macro-Crack Initiation
,”
ASME J. Eng. Mater. Technol.
,
115
(
4
), pp.
373
379
.10.1115/1.2904232
37.
Kurath
,
P.
,
Downing
,
S. D.
, and
Galliart
,
D. R.
,
1989
, “
Summary of Non-Hardened Notched Shaft – Round Robin Program
,”
Multiaxial Fatigue – Analysis and Experiments
,
G. E.
Leese
and
D. F.
Socie
, eds.,
SAE AE-14, Society of Automotive Engineers
,
Warrendale, PA
, pp.
13
32
.
38.
Yan
,
X. Q.
,
2024
, “
Research Into Applicability of Wöhler Curve Method for Low-Cycle Fatigue of Metallic Materials
,”
J. Harbin Inst. Technol.
,
31
(
2
), pp.
22
37
.
39.
Yan
,
X. Q.
, 2023, “
The Wöhler Curve Method for a Low/Medium/High Cycle Fatigue of Metals
,” Authorea, accessed May 28, 2024, https://doi.org/10.22541/au.167447214.41953886/v1
40.
Yan
,
X. Q.
,
2021
, “
A Mean Stress Model of Fatigue Life of Metal Materials Under Multiaxial Loading
,”
Mater. Sci. Eng. Int. J.
,
5
(
2
), pp.
60
69
.10.15406/mseij.2021.05.00157
41.
Yan
,
X. Q.
,
2023
,
Multiaxial Notch Fracture and Fatigue
,
CRC Press
,
Boca Raton, London, New York
, p.
367
.
42.
Yan
,
X. Q.
,
2021
, “
An Empirical Fracture Equation of Mixed Mode Cracks
,”
Theor. Appl. Fract. Mech.
,
116
, p.
103146
.10.1016/j.tafmec.2021.103146
You do not currently have access to this content.