Abstract

Creep crack growth is a phenomenon which arises in damaged metallic structures under combined primary and secondary loads in the creep regime. The High Temperature Flaw Evaluation Code Committee of the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (BPVC) is evaluating methods in extending Code Case N-934 to capture transient creep crack growth. This paper provides context and basic examples on the selected approach to transient creep crack growth methods based on the C(t)-integral. The basis for selected C(t)-integral solution as analytical method is established, including an overview of its derivation. Practical assessments of a crack growing under creep conditions in a realistic component are conducted to illustrate the analytical approach. Additional considerations in the application of the analytical methods and limitations are discussed.

References

1.
Dean
,
D. W.
, and
Johns
,
J. G.
,
2015
, “
Structural Integrity Issues in High Temperature Nuclear Plant: Experience From Operation of the UK Advanced Gas Cooled Reactor Fleet
,” Transactions SMiRT-23 Manchester, UK, Paper No. 459, pp.
1
9
.
2.
API
,
2021
, API-579/ASME FFS-1 Fitness-For-Service, American Petroleum Institute, Dallas, TX.
3.
EDF-Energy
,
2021
, “
EDF-Energy's R5 Assessment Procedure for the High Temperature Response of Structures
,” Issue 3 Revision 003, EDF-Energy, Gloucester, UK.
4.
Webster
,
G. A.
, and
Ainsworth
,
R. A.
,
1994
,
High Temperature Component Life Assessment
,
Chapman & Hall
,
London, UK
.
5.
Saxena
,
A.
,
2015
, “
Creep and Creep–Fatigue Crack Growth
,”
Int. J. Fract.
,
191
(
1–2
), pp.
31
51
.10.1007/s10704-015-9994-4
6.
Webster
,
G. A.
, and
Smith
,
D. J.
,
1983
, “
Solution Procedures for the Creep Crack Growth Parameter C
,”
Int. J. Fract.
,
23
(
3
), pp.
R125
R127
.10.1007/BF00028836
7.
Nikbin
,
K.
,
Webster
,
G. A.
, and
Turner
,
C. E.
,
1976
, “Relevance of Nonlinear Fracture Mechanics to Creep Crack Growth,”
ASTM STP
601.
8.
ASTM,
2019
, E1457-19 Standard Test Method for Measurement of Creep Crack Growth Times in Metals, ASTM, West Conshohocken, PA.
9.
Wilkinson
,
D. S.
, and
Biner
,
S. B.
,
1988
, “
Creep Crack Growth Simulation Under Transient Stress Fields
,”
Metall. Trans. A.
,
19
(
4
), pp.
829
835
.10.1007/BF02628365
10.
Lee
,
H. S.
,
Kim
,
D. J.
,
Ainsworth
,
R. A.
, and
Budden
,
P. J.
,
2018
, “
Transient Elastic-Plastic-Creep Crack-Tip Stress Fields Under Load-Controlled Loading
,”
Fatigue Fract. Eng. Mater. Struct.
, 41(4), pp.
949
969
.10.1111/ffe.12740
11.
Recuero
,
A.
,
Petkov
,
M.
,
Spencer
,
B. W.
, and
Juan
,
P. A.
,
2023
, “
Continuum Damage Mechanics Modeling of High-Temperature Flaw Propagation: Application to Creep Crack Growth in 316H Standardized Specimens and Nuclear Reactor Components
,”
ASME J. Pressure Vessel. Technol.
,
145
(
5
), p.
051507
.10.1115/1.4062953
12.
Ainsworth
,
R. A.
, and
Budden
,
P. J.
,
1990
, “
Crack Tip Fields Under Non-Steady Creep Conditions—II. Estimates of Associated Crack Growth
,”
Fatigue Fract. Eng. Mater. Struct.
,
13
, pp.
277
285
.10.1111/j.1460-2695.1990.tb00599.x
13.
Ainsworth
,
R. A.
, and
Budden
,
P. J.
,
1990
, “
Crack Tip Fields Under Non-Steady Creep Conditions—I. Estimates of the Amplitude of the Fields
,”
Fatigue Fract. Eng. Mater. Struct.
,
13
, pp.
263
276
.10.1111/j.1460-2695.1990.tb00598.x
14.
Saxena
,
A.
, and
Yoon
,
D.
,
2003
, “
Creep Crack Growth Assessment of Defects in High Temperature Components
,”
WRC Bull
,
483
.
15.
Riedel
,
H.
,
1987
,
Fracture at High Temperatures
,
Springer-Verlag
,
Berlin
.
16.
Davies
,
C. M.
,
Dean
,
D. W.
,
Yatomi
,
M.
, and
Nikbin
,
K. M.
,
2009
, “
The Influence of Test Duration and Geometry on the Creep Crack Initiation and Growth Behaviour of 316H Steel
,”
Mater. Sci. Eng. A
,
510–511
, pp.
202
206
.10.1016/j.msea.2008.04.109
17.
ASME
,
2023
, “
ASME BPVC Section XI Division 2—Code Case N-934—Evaluation Procedure and Acceptance Criteria for Flaws where Crack Growth from Creep May Occur at Elevated Temperature
,” ASME, New York.
18.
ASME,
2021
, “
ASME BPVC Section III Rules for Construction of Nuclear Facility Components—Division 5 High Temperature Reactors
,” ASME, New York.
19.
ASME
,
2021
, “
BPVC Section XI—Rules for Inservice Inspection of Nuclear Reactor Facility Components—Division 1 Rules for Inspection and Testing of Components of Light-Water-Cooled Plants
,” ASME, New York.
20.
Brust
,
F. W.
,
Wilkowski
,
G. M.
,
Krishnaswamy
,
P.
, and
Wichman
,
K.
,
2009
, “
Task 8: Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds Part I Task Report— Review and Assess Current Methodologies Recommend NH Implementation
,” ASME, New York, Standards Report No. STP-NU-039.
21.
Piques
,
R.
,
Bensussan
,
P.
, and
Pineau
,
A.
,
1989
, “
Crack Initiation and Growth Under Creep and Fatigue Loading of an Austenitic Stainless Steel
,”
Nucl. Eng. Des.
,
116
(
3
), pp.
293
306
.10.1016/0029-5493(89)90089-7
22.
Wen
,
J.-F.
,
Tu
,
S.
,
Gao
,
X.-L.
, and
Reddy
,
J. N.
,
2013
, “
Simulations of Creep Crack Growth in 316 Stainless Steel Using a Novel Creep-Damage Model
,”
Eng. Fract. Mech
,
98
, pp.
169
184
.10.1016/j.engfracmech.2012.12.014
23.
Elmukashfi
,
E.
, and
Cocks
,
A. C. F.
,
2017
, “
A Theoretical and Computational Framework for Studying Creep Crack Growth
,”
Int. J. Fract. Springer Netherlands
,
208
(
1–2
), pp.
145
170
.10.1007/s10704-017-0230-2
24.
Saxena
,
A.
,
1988
, “
Creep Crack Growth Under Transient Conditions
,”
Mater. Sci. Eng. A
,
103
, pp. 125–129.10.1016/0025-5416(88)90559-9
25.
Riedel
,
H.
, and
Rice
,
J. R.
,
1980
,
Fracture Mechanics: Twelfth Conference
,
ASTM
, ASTM STP 700, P. C. Paris, pp.
112
–1
30
.
26.
Ehlers
,
R.
, and
Riedel
,
H.
,
1981
,
A Finite Element Analysis of Creep Deformation in a Specimen Containing Macroscopic Crack
,
ICF5
,
Paris, France
.
27.
Bassani
,
J. L.
,
Hawk
,
D. E.
, and
Saxena
,
A.
,
1988
, “
Evaluation of the Ct Parameter for Characterizing Creep Crack Growth Rate in the Transient Regime
,”
Nonlinear Fracture Mechanics: Volume I Time-Dependent Fracture,
ASTM International
, Conshohocken, PA.
28.
Leung
,
C. P.
, and
McDowell
,
D. L.
,
1990
, “
Inclusion of Primary Creep in the Estimation of the C(t) Parameter
,”
Int. J. Fract.
,
46
(
2
), pp.
81
104
.10.1007/BF00041997
29.
Kanninen
,
M. F.
, and
Popelar
,
C. H.
,
1987
,
Advanced Fracture Mechanics
,
Oxford University Press
,
Oxford, UK
.
30.
Riedel
,
H.
,
1981
, “
Creep Deformation at Crack Tips in Elastic-Viscoplastic Solids
,”
J. Mech. Phys. Solids
,
29
, pp. 35–49.10.1016/0022-5096(81)90014-4
31.
Joch
,
J.
, and
Ainsworth
,
R. A.
,
1992
, “
The Effect of Geometry on the Development of Creep Singular Fields for Defects Under Step-Load Controlled Loading
,”
Fatigue Fract. Eng. Mater. Struct.
,
15
(
3
), pp.
229
240
.10.1111/j.1460-2695.1992.tb01266.x
32.
Moulin
,
D.
,
Drubay
,
B.
, and
Laiarinandrasana
,
L.
,
1999
, “
A Synthesis of the Fracture Assessment Methods Proposed in the French RCC-MR Code for High Temperature
,”
WRC Bulletin 440
, Welding Research Council, INC, New York.https://radinbookstore.com/standard/2926/asynthesis-of-the-fracture-assessment-methods-proposed-in-the-french-rcc-mr-code-forhigh-temperature
33.
AFCEN,
2002
, “
RCC-MRx - Design and Construction Rules for Mechanical Components of FBR Nuclear Islands and High Temperature Applications
,” French Association for Design, Construction and In-Service Inspection Rules for Nuclear Steam Supply System Components, France.
34.
Saxena
,
A.
,
1998
,
Nonlinear Fracture Mechanics for Engineers
,
CRC Press
,
Boca Raton, FL
.
35.
Scott
,
P. M.
,
Anderson
,
T. L.
,
Osage
,
D. A.
, and
Wilkowski
,
G. M.
,
1998
, “
A Review of Existing Fitness-for-Service Crtieria for Crack-Like Flaws
,”
WRC Bulletin 430
, Welding Research Council, INC, New York
.
36.
Ainsworth
,
R. A.
,
2006
, “
R5 Procedures for Assessing Structural Integrity of Components Under Creep and Creep–Fatigue Conditions
,”
Int. Mater. Rev.
,
51
(
2
), pp.
107
126
.10.1179/174328006X79463
37.
Messner
,
M. C.
, and
Sham
,
T. L.
,
2020
, “
Environmental Creep-Fatigue and Weld Creep Cracking: A Summary of Design and Fitness-For-Service Practices
,” No. ANL-19/13.
38.
EDF-Energy,
2019
, “
R6: Assessment of the Integrity of Structures Containing Defects
,”
EDF Energy Nuclear Generation Limited
, Gloucester, UK.
39.
Baker
,
A. J.
,
O'Donnell
,
M. P.
, and
Dean
,
D. W.
,
2003
, “
Use of the R5 Volume 4/5 Procedures to Assess Creep-Fatigue Crack Growth in a 316 L(N) cracked Plate at 650°C
,”
Int. J. Press. Vessel. Piping
,
80
, pp.
481
–48
8
.10.1016/S0308-0161(03)00102-9
40.
Petkov
,
M. P.
,
Sallabury
,
C.
,
Messner
,
M. C.
, and
Brust
,
F. W.
,
2024
, “
C(t)-Integral Methods - Application in Extending Code Case N-934 for Transient Creep Crack Growth
,”
ASME BPVC HTFE Committee - White Paper
.
41.
Rice
,
J. R.
,
1968
, “
A Path-Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
, pp. 379–386.10.1115/1.3601206
42.
ANSYS-Inc.
, 2021, “
Ansys Mechanical, Release 21.2
,”
ANSYS-Inc
., Canonsburg, PA.
43.
Petkov
,
M. P.
,
Young
,
G. A.
, and
Juan
,
P. A.
,
2022
, “
Non-Conservatism of ASME BPVC Section III Division 5 Isochronous Stress–Strain Curves for 316H Stainless Steel at Low Stresses
,”
ASME J. Press. Vessel Technol.
,
144
(6), p.
061506
.10.1115/1.4054622
44.
Webster
,
G. A.
, and
Ainsworth
,
R. A.
,
1994
,
High Temperature Component Life Assessment
,
Chapman and Hall, London
, UK.
45.
Mehmanparast
,
A.
,
Davies
,
C. M.
,
Dean
,
D. W.
, and
Nikbin
,
K. M.
,
2013
, “
The Influence of Pre-Compression on the Creep Deformation and Failure Behaviour of Type 316H Stainless Steel
,”
Eng. Fract. Mech. Elsevier Ltd.
,
110
, pp.
52
67
.10.1016/j.engfracmech.2013.08.006
46.
Ainsworth
,
R. A.
,
Dean
,
D. W.
,
Budden
,
P. J.
, and
Hughes
,
D. G. J.
,
2015
, “
Estimation of the Parameter Controlling Short-Term Creep Crack Growth Under Combined Primary and Secondary Loading
,” Transcations, SMiRT-23, Manchester, UK, Paper No. 092.
47.
Webster
,
G. A.
,
Dean
,
D. W.
,
Spindler
,
M. W.
, and
Smith
,
N. G.
,
2010
, “
Methods for Determining Creep Damage and Creep-Fatigue Crack Growth Incubation in Austenitic Stainless Steel
,”
ASME
Paper No. PVP2009-77949.10.1115/PVP2009-77949
48.
Sham
,
T. L.
,
2009
, “
Creep and Creep-Fatigue Crack Growth Processes in HTGR and VHTR Materials
,” Report No. ORNL/TM-2009/034.
You do not currently have access to this content.