Abstract

Based on the data of wear casing for ShunNan 501 well in Northwest oilfield and the stress–strain intrinsic relationship of P110 tubing, a two-dimensional mechanical model of casing with compound wear is established by using the nonlinear extended finite element method (XFEM) and the burst failure criterion of damage evolution with due consideration of wear type, angle between crescents, overlap depth of crescents, and wear depth caused by drill pipe body and tool joint. The accuracy and reliability of model are verified by the full-scale burst test data. The effects of wear types, angle between crescents, overlap depth of crescents, and wear depth on the internal pressure yield strength (IPYS), burst strength and failure behavior for casing with compound wear are analyzed, by which it is found that casing with compound wear exist stress interference and complex interaction between stress interference and stress concentration, and the burst failure mechanism of casing with compound wear is revealed. Based on the gray correlation analysis result of wear parameters, a prediction model of the residual strength for P110 casing with compound wear is established by 1stOpt software and universal global optimization (UGO) algorithm.

References

1.
Cao
,
Y.
,
Dou
,
Y.
,
Li
,
M.
, and
Suo
,
H.
,
2019
, “
Theoretical and Simulation Study on the Collapse Strength of a Curved Casing in Horizontal Wells
,”
Proc. Struct. Integr.
,
22
, pp.
84
92
.10.1016/j.prostr.2020.01.012
2.
Yue
,
G.
,
Deli
,
G.
,
Jin
,
Y.
,
Wenjun
,
H.
, and
Shuaishuai
,
N.
,
2021
, “
A Casing Wear Prediction Model for Large Displacement Wells Based on Drilling Column Flexure
,”
J. China Univ. Pet.
,
45
, pp.
73
79
.
3.
Wang
,
Y. H.
,
Hao
,
Y. Z.
,
Li
,
F.
,
Lu
,
F. F.
,
Deng
,
K. H.
, and
Lin
,
Y. H.
,
2019
, “
Failure Mechanism of Well Bore Integrity for HTHP Gas Wells, Shunnan Block, Tarim Basin
,”
Nat. Gas Explor. Dev.
,
42
, pp.
86
96
.
4.
Zhang
,
X.
,
Huang
,
W.
, and
Gao
,
D.
,
2022
, “
Prediction Model of Casing Wear Shape and Residual Strength Under Compound Modes
,”
SPE J.
,
27
(
04
), pp.
2183
2207
.10.2118/209612-PA
5.
Wenjun
,
H.
,
Xingkun
,
Z.
,
Deli
,
G.
,
Xiaolei
,
S.
, and
Peng
,
S.
,
2021
, “
Casing Wear Shape and Depth Calculation Model in a Compound Mode
,”
Acta Petrolei Since
,
42
, pp.
1373
1381
.
6.
Kuanhai
,
D.
,
Yang
,
P.
,
Bing
,
L.
,
Yuanhua
,
L.
, and
Jiandong
,
W.
,
2021
, “
Through-Wall Yield Ductile Burst Pressure of High-Grade Steel Tube and Casing With and Without Corroded Defect
,”
Mar. Struct.
,
76
, p.
102902
.10.1016/j.marstruc.2020.102902
7.
Ming
,
C. H. I.
,
Tao
,
L. I. U.
,
Chengwen
,
X. U. E.
,
Jinlong
,
W. A. N. G.
,
Lin
,
G. U. O.
, and
Xiaozhi
,
X. I. N.
,
2021
, “
Research on Casing Wear Prediction and Residual Strength in High Pressure High Temperature and Deep Well
,”
Drilling Prod. Technol.
,
44
(
6
), p.
1
.
8.
Ding
,
L.
,
Xian
,
M.
, and
Zhang
,
Q.
,
2020
, “
Prediction of Casing Wear Depth and Residual Strength in Highly-Deviated Wells Based on Modeling and Simulation
,”
Sci. Prog.
,
103
(
4
), p.
003685042096957
.10.1177/0036850420969577
9.
Lili
,
C. H. E. N.
,
Yufei
,
L. I.
,
Zhi
,
Z. H. A. N. G.
,
Nan
,
C. A. I.
, and
Yushan
,
Z. H. E. N. G.
,
2022
, “
Casing Wear Law and Anti-Wear Optimization in Horizontal Well
,”
Drilling Prod. Technol.
,
45
(
2
), pp.
21
27
.
10.
Zhang
,
Q.
,
Lian
,
Z.
, and
Lin
,
T.
,
2020
, “
Prediction of Residual Burst Strength of Wear Casing by Theoretical and Numerical Modelling
,”
Int. J. Pressure Vessels Piping
,
188
, p.
104195
.10.1016/j.ijpvp.2020.104195
11.
Pan
,
Y.
,
Jun
,
L.
,
Gonghui
,
L.
,
Xuefeng
,
S.
, and
Kai
,
R.
,
2018
, “
Study on the Effect of Uneven Wear Depth on Casing Stress
,”
China Pet. Mach., 46, pp. 12–16.
12.
Kuanhai
,
D.
,
Niantao
,
Z.
,
Yuanhua
,
L.
,
Xi
,
Y.
,
Zeng
,
L.
,
Rentian
,
Y.
, and
Yue
,
Y.
,
2022
, “
Study on Residual Strength and Life Prediction of Corroded Tubing Based on Thermal-Mechanical Coupling XFEM
,”
Ocean Eng.
,
255
, p.
111450
.10.1016/j.oceaneng.2022.111450
13.
Xuesong
,
X.
,
Zhiqiang
,
W.
,
Xingkun
,
Z.
, and
Wenjun
,
H.
,
2022
, “
Study on the Residual Strength of Compound Crescent Wear Casing
,”
China Pet. Mach.
,
50
, pp.
126
132
.
14.
Li
,
C.
, and
Samuel
,
R.
,
2018
, “
Casing Burst Strength Degradation Due to Casing Wear
,”
ASME J. Energy Res. Technol.
,
140
(
3
), p.
032901
.10.1115/1.4037351
15.
Zhang
,
Q.
,
Liao
,
T.
,
Ding
,
L.
,
Yang
,
H.
, and
Lian
,
Z.
,
2023
, “
Theoretical and Numerical Study on Residual Strength of Wear Casing Considering Wellbore Curvature
,”
Geoenergy Sci. Eng.
,
227
, p.
211874
.10.1016/j.geoen.2023.211874
16.
Huang
,
W. J.
,
Zhang
,
X. K.
, and
Gao
,
D. L.
,
2022
, “
Predicting Method of Casing Failure Risk Under Compound: A Case Study on Ø193.68 mm×12.7 mm Casing
,”
Nat. Gas Ind.
,
42
, pp.
85
94
.
17.
Zhu
,
Y. J.
,
2017
,
Prediction to Residual Strength of Defective Casing and Its Safety Evaluation
,
China University of Petroleum
,
Qing Dao, China
.
18.
Li
,
M.
,
Liu
,
Z.
,
Zhao
,
Y.
,
Zhou
,
Y.
,
Huang
,
P.
,
Li
,
X.
,
Li
,
P.
,
Wang
,
X.
, and
Zhang
,
D.
,
2019
, “
Effects of Corrosion Defect and Tensile Load on Injection Pipe Burst in CO2 Flooding
,”
J. Hazard. Mater.
,
366
, pp.
65
77
.10.1016/j.jhazmat.2018.11.089
19.
Kuanhai
,
D.
,
Yuanhua
,
L.
,
Bing
,
L.
, and
Xiaohong
,
W.
,
2019
, “
Investigation on the Calculation Model of Burst Pressure for Tube and Casing Under Practical Service Environment
,”
Int. J. Hydrogen Energy
,
44
(
41
), pp.
23277
23288
.10.1016/j.ijhydene.2019.06.205
20.
Neagu
,
D.
,
Azzeh
,
M.
, and
Peter
,
I.
,
2010
, “
Fuzzy Gray Relational Analysis for Software Effort Estimation
,”
Empirical Software Eng.
,
15
(
1
), pp.
60
90
.10.1007/s10664-009-9113-0
You do not currently have access to this content.