Abstract

Nonmetallic composite pipes are one of the most effective ways to transport hydrogen. Basalt fiber materials can be used on hydrogen pipes, and simulation models of composite pipe under plate and spherical indenter loads were established to study the effects of structure parameters on the pipe's mechanical behavior and failure modes. The results show that the matrix is the weakest part of the composite pipe under spherical indenter load, the failure areas of each fiber layer change for winding angle. The ultimate load decreases with the increasing of diameter-thickness ratio, and that increases with a deviation of the fiber winding angle from the axial direction, the indent depth increases with the increasing of diameter-thickness ratio. Under plate load, the final deformation of composite pipe is affected by the fiber winding angle and diameter-thickness ratio. The weak part of composite pipe changes due to the fiber winding angle, but the failure areas start from the plastic line area. The ultimate load and total absorbed energy of composite pipes under plate load is proportional to the winding angle and inversely proportional to the diameter-thickness ratio.

References

1.
Meng
,
X.
,
Chen
,
M.
,
Gu
,
A.
,
Wu
,
X.
,
Liu
,
B.
,
Zhou
,
J.
, and
Mao
,
Z.
,
2022
, “
China's Hydrogen Development Strategy in the Context of Double Carbon Targets
,”
Nat. Gas Ind.
,
42
(
4
), pp.
156
179
.10.1016/j.ngib.2022.11.004
2.
Liu
,
C.
,
Zhang
,
R.
,
Tian
,
L.
,
Wang
,
C.
,
Xu
,
X.
,
Pei
,
Y.
, and
Li
,
Y.
,
2022
, “
Research Progress on Compatibility of Non-Metallic Pipes in Hydrogen Environment
,”
Nat. Gas Ind.
,
42
(
9
), pp.
145
156
.
3.
Zhang
,
H.
,
Li
,
J.
,
Su
,
Y.
,
Wang
,
P.
, and
Yu
,
B.
,
2021
, “
Effects of Hydrogen Blending on Hydraulic and Thermal Characteristics of Natural Gas Pipeline and Pipe Network
,”
Oil Gas Sci. Technol.
,
76
, pp.
70
85
.10.2516/ogst/2021052
4.
Ahluwalia
,
R.
,
Hua
,
T.
, and
Peng
,
J.
,
2012
, “
On-Board and Offboard Performance of Hydrogen Storage Options for Light-Duty Vehicles
,”
Int. J. Hydrogen Energy
,
37
(
3
), pp.
2891
2910
.10.1016/j.ijhydene.2011.05.040
5.
Czigany
,
T.
,
2007
, “
Trends in Fiber Reinforcements-the Future Belongs to Basalt Fiber
,”
Express Polym. Lett.
,
1
(
2
), pp.
59
59
.10.3144/expresspolymlett.2007.11
6.
Tamás
,
D.
, and
Tibor
,
C.
,
2009
, “
Chemical Composition and Mechanical Properties of Basalt and Glass Fibers: A Comparison
,”
Textile Res. J.
,
79
(
7
), pp.
645
651
.10.1177/004051750809559
7.
Demirci
,
M. T.
,
Tarakçıoğlu
,
N.
,
Avcı
,
A.
,
Akdemir
,
A.
, and
Demirci
,
İ.
,
2017
, “
Fracture Toughness (Mode I) Characterization of SiO2 Nanoparticle Filled Basalt/Epoxy Filament Wound Composite Ring With Split-Disk Test Method
,”
Composites, Part B
,
119
, pp.
114
124
.10.1016/j.compositesb.2017.03.045
8.
Naseer
,
H.
,
Saravanan
,
K.
, and
Hamdan
,
H.
,
2019
, “
Effects of Carbon Fiber Hybridization on the Compressive Strength of Glass-Carbon/Epoxy Hybrid Composite Pipes Before and After Low Velocity Impact
,”
Key Eng. Mater.
,
796
, pp.
30
37
.10.4028/www.scientific.net/KEM.796.30
9.
Gemi
,
L.
,
2018
, “
Investigation of the Effect of Stacking Sequence on Low Velocity Impact Response and Damage Formation in Hybrid Composite Pipes Under Internal Pressure. A Comparative Study
,”
Composites, Part B
,
153
, pp.
217
232
.10.1016/j.compositesb.2018.07.056
10.
Gemi
,
L.
,
Madenci
,
E.
,
Yasin
,
O.
,
Şakir
,
Y.
,
Alexander
,
S.
, and
Alexander
,
S.
,
2022
, “
Effect of Fiber Wrapping on Bending Behavior of Reinforced Concrete Filled Pultruded GFRP Composite Hybrid Beams
,”
Polymers
,
14
(
18
), p.
3740
.10.3390/polym14183740
11.
Gemi
,
L.
,
Kara
,
M.
, and
Avci
,
A.
,
2016
, “
Low Velocity Impact Response of Prestressed Functionally Graded Hybrid Pipes
,”
Composites, Part B
,
106
, pp.
154
163
.10.1016/j.compositesb.2016.09.025
12.
Gemi
,
L.
,
Sinan
,
O.
, and
Akdemir
,
A.
,
2017
, “
Experimental Investigation of Fatigue Damage Formation of Hybrid Pipes Subjected to Impact Loading Under Internal Pre-Stress
,”
Composites, Part B
,
119
, pp.
196
205
.10.1016/j.compositesb.2017.03.051
13.
Özkan
,
Ö.
,
Ömer
,
Y.
, and
Ahmet
,
E.
,
2019
, “
An Experimental Study on Intraply Fiber Hybridization of Filament Wound Composite Pipes Subjected to Quasi-Static Compression Loading
,”
Polym. Test.
,
79
, p.
106082
.10.1016/j.polymertesting.2019.106082
14.
Zhou
,
J.
,
Wen
,
P.
, and
Wang
,
S.
,
2020
, “
Numerical Investigation on the Repeated Low-Velocity Impact Behavior of Composite Laminates
,”
Composites, Part B
,
185
, p.
107771
.10.1016/j.compositesb.2020.107771
15.
Sebaey
,
T.
, and
Mahdi
,
E.
,
2016
, “
Crashworthiness of Pre-Impacted Glass/Epoxy Composite Tubes
,”
Int. J. Impact Eng.
,
92
, pp.
18
25
.10.1016/j.ijimpeng.2015.11.007
16.
Curtis
,
J.
,
Hinton
,
M.
,
Li
,
S.
,
Reid
,
S.
, and
Soden
,
P.
,
2000
, “
Damage, Deformation and Residual Burst Strength of Filament-Wound Composite Tubes Subjected to Impact or Quasi-Static Indentation
,”
Composites, Part B
,
31
(
5
), pp.
419
433
.10.1016/S1359-8368(00)00014-7
17.
Gning
,
P. B.
,
Tarfaoui
,
M.
,
Collombet
,
F.
,
Riou
,
L.
, and
Davies
,
P.
,
2005
, “
Damage Development in Thick Composite Tubes Under Impact Loading and Influence on Implosion Pressure: Experimental Observations
,”
Composites, Part B
,
36
(
4
), pp.
306
318
.10.1016/j.compositesb.2004.11.004
18.
Mahdi
,
E.
,
Hamouda
,
A.
,
Sahari
,
B.
, and
Khalid
,
Y.
,
2003
, “
Effect of Hybridisation on Crushing Behaviour of Carbon/Glass Fibre/Epoxy Circular–Cylindrical Shells
,”
J. Mater. Process. Technol.
,
132
(
1–3
), pp.
49
57
.10.1016/S0924-0136(02)00260-1
19.
Zhang
,
Z.
,
Hou
,
S.
,
Liu
,
Q.
, and
Han
,
X.
,
2018
, “
Winding Orientation Optimization Design of Composite Tubes Based on Quasi-Static and Dynamic Experiments
,”
Thin-Walled Struct.
,
127
(
0
), pp.
425
433
.10.1016/j.tws.2017.11.052
20.
Chen
,
G.
,
Liu
,
C.
,
Yue
,
H.
,
Zhu
,
Y.
, and
Zhang
,
G.
,
2017
, “
Radial Compressive Properties of Fiber-Reinforced Thermoset Composites Pipe With Thermoplastic Polyvinylidene Fluoride Inner Liner
,”
Polym. Mater.: Sci. Eng.
,
33
(
6
), pp.
88
94
, 99.10.16865/j.cnki.1000-7555.2017.06.016
21.
Sun
,
G.
,
Guo
,
X.
,
Li
,
S.
,
Ruan
,
D.
, and
Li
,
Q.
,
2020
, “
Comparative Study on Aluminum/GFRP/CFRP Tubes for Oblique Lateral Crushing
,”
Thin-Walled Struct.
,
152
, p.
106420
.10.1016/j.tws.2019.106420
22.
Zhu
,
G.
,
Zhao
,
Z.
,
Hu
,
P.
,
Luo
,
G.
,
Zhao
,
X.
, and
Yu
,
Q.
,
2021
, “
On Energy-Absorbing Mechanisms and Structural Crashworthiness of Laterally Crushed Thin-Walled Structures Filled With Aluminum Foam and CFRP Skeleton
,”
Thin-Walled Struct.
,
160
, p.
107390
.10.1016/j.tws.2020.107390
23.
Yang
,
H.
, and
Ren
,
Y.
,
2023
, “
Crashworthiness Design of CFRP/AL Hybrid Circular Tube Under Lateral Crushing
,”
Thin-Walled Struct.
,
186
, p.
110669
.10.1016/j.tws.2023.110669
24.
Li
,
S.
,
Guo
,
X.
,
Li
,
Q.
,
Ruan
,
D.
, and
Sun
,
G.
,
2020
, “
On Lateral Compression of Circular Aluminum, CFRP and GFRP Tubes
,”
Compos. Struct.
,
232
, p.
111534
.
25.
Li
,
S.
,
Guo
,
X.
,
Li
,
Q.
, and
Sun
,
G.
,
2020
, “
On Lateral Crashworthiness of Aluminum/Composite Hybrid Structures
,”
Compos. Struct.
,
245
, p.
112334
.10.1016/j.compstruct.2020.112334
26.
Huang
,
Z.
, and
Zhang
,
C.
,
2022
, “
Numerical and Theoretical Studies on the Oblique Lateral Collapse of Aluminum/CFRP Hybrid Beams
,”
Compos. Struct.
,
300
, p.
116058
.10.1016/j.compstruct.2022.116058
27.
Lu
,
B.
,
Shen
,
C.
,
Zhang
,
J.
,
Zheng
,
D.
, and
Zheng
,
T.
,
2021
, “
Study on Energy Absorption Performance of Variable Thickness CFRP/Aluminum Hybrid Square Tubes Under Axial Loading
,”
Compos. Struct.
,
276
, p.
114469
.10.1016/j.compstruct.2021.114469
You do not currently have access to this content.