Abstract

Various fields in engineering explore the applicability of deep learning within condition monitoring. With the resurgence of nuclear energy due to electricity and carbon-free power generation demand, ensuring safe operations at nuclear power plants is important. Nuclear safety systems can undergo vibrations due to operating loads such as pump operations, flow-induced, etc. Safety equipment-piping systems experience degradation over the course of time due to flow-accelerated erosion and corrosion. Undetected degradation at certain locations can be subjected to a buildup of cyclic fatigue due to operational vibrations and thermal cycles. A condition monitoring framework is required to avoid fatigue cracking and for early detection of degraded locations along with the severity of degradation. This study aims to propose a condition monitoring methodology for nuclear equipment-piping subject to pump-induced vibrations during normal operations by designing a novel feature extraction technique, exploring parameters and developing a deep neural network, incorporating uncertainty in degradation severity, conducting a thorough investigation of predicted results to analyze erroneous predictions, and proposing strategic recommendations for “safe” pump operating speeds, as per ASME design criteria. Even with nondestructive testing, the detection of fatigue in pipes continues to be a difficult problem. Thus, this novel strategic recommendation to the operator can be beneficial in avoiding fatigue in piping systems due to pump-induced vibrations. The effectiveness of the proposed framework is demonstrated on a Z-piping system connected to an auxiliary pump from the Experimental Breeder Reactor II nuclear reactor and a high prediction accuracy is achieved.

References

1.
Lin
,
L.
,
Athe
,
P.
,
Rouxelin
,
P.
,
Avramova
,
M.
,
Gupta
,
A.
,
Youngblood
,
R.
,
Lane
,
J.
, and
Dinh
,
N.
,
2022
, “
Digital-Twin-Based Improvements to Diagnosis, Prognosis, Strategy Assessment, and Discrepancy Checking in a Nearly Autonomous Management and Control System
,”
Ann. Nucl. Energy
,
166
, p.
108715
.10.1016/j.anucene.2021.108715
2.
Kim
,
J.
,
Lee
,
D.
,
Yang
,
J.
, and
Lee
,
S.
,
2020
, “
Conceptual Design of Autonomous Emergency Operation System for Nuclear Power Plants and Its Prototype
,”
Nucl. Eng. Technol.
,
52
(
2
), pp.
308
322
.10.1016/j.net.2019.09.016
3.
Sandhu
,
H. K.
,
Bodda
,
S. S.
, and
Gupta
,
A.
,
2023
, “
A Future With Machine Learning: Review of Condition Assessment of Structures and Mechanical Systems in Nuclear Facilities
,”
Energies
,
16
(
6
), p.
2628
.10.3390/en16062628
4.
Wu
,
P. C.
,
1989
, “
Erosion/Corrosion-Induced Pipe Wall Thinning in U.S. Nuclear Power Plants
,”
Report No. NUREG-1344
,
6152848
.
5.
Jacimovic
,
N.
, and
D'Agaro
,
F.
,
2020
, “
On Piping Vibration Screening Criteria
,”
ASME J. Pressure Vessel Technol.
,
142
(
1
), p.
014502
.10.1115/1.4045026
6.
Antaki
,
G.
, and
Gilada
,
R.
,
2015
, “
Chapter 2 - Design Basis Loads and Qualification
,”
Nuclear Power Plant Safety and Mechanical Integrity
,
G.
Antaki
, and
R.
Gilada
, eds.,
Butterworth-Heinemann
,
Boston
, MA, pp.
27
102
.
7.
Wacker
,
J.
,
2007
, “
Fy06 Annual Report on the Progress and Path Forward for the NA-22 Funded Project
,” Report No. PL06-AUT308-PD01: PNNL-16527.
8.
U.S.NRC
,
2010
, “
Generic Aging Lessons Learned (GALL) Report—Final Report
,” Revision 2, Report No. NUREG-1801.
9.
Sandhu
,
H. K.
,
2021
, “
Artificial Intelligence Based Condition Monitoring of Nuclear Piping-Equipment Systems
,”
Ph.D. thesis
,
North Carolina State University
, Raleigh, NC.https://www.proquest.com/openview/dd374dd1cc1de1fe254deddec95e58cb/1?pqorigsite=gscholar&cbl=18750&diss=y
10.
Zhang
,
Z.
, and
Sun
,
C.
,
2021
, “
Structural Damage Identification Via Physics-Guided Machine Learning: A Methodology Integrating Pattern Recognition With Finite Element Model Updating
,”
Struct. Health Monit.
,
20
(
4
), pp.
1675
1688
.10.1177/1475921720927488
11.
Lei
,
Y.
,
Zhang
,
Y.
,
Mi
,
J.
,
Liu
,
W.
, and
Liu
,
L.
,
2021
, “
Detecting Structural Damage Under Unknown Seismic Excitation by Deep Convolutional Neural Network With Wavelet-Based Transmissibility Data
,”
Struct. Health Monit.
,
20
(
4
), pp.
1583
1596
.10.1177/1475921720923081
12.
Entezami
,
A.
,
Shariatmadar
,
H.
, and
Mariani
,
S.
,
2020
, “
Fast Unsupervised Learning Methods for Structural Health Monitoring With Large Vibration Data From Dense Sensor Networks
,”
Struct. Health Monit.
,
19
(
6
), pp.
1685
1710
.10.1177/1475921719894186
13.
Broer
,
A. A. R.
,
Benedictus
,
R.
, and
Zarouchas
,
D.
,
2022
, “
The Need for Multi-Sensor Data Fusion in Structural Health Monitoring of Composite Aircraft Structures
,”
Aerospace
,
9
(
4
), p.
183
.10.3390/aerospace9040183
14.
Civera
,
M.
, and
Surace
,
C.
,
2022
, “
Non-Destructive Techniques for the Condition and Structural Health Monitoring of Wind Turbines: A Literature Review of the Last 20 Years
,”
Sensors
,
22
(
4
), p.
1627
.10.3390/s22041627
15.
Paolacci
,
F.
,
Quinci
,
G.
,
Nardin
,
C.
,
Vezzari
,
V.
,
Marino
,
A.
, and
Ciucci
,
M.
,
2021
, “
Bolted Flange Joints Equipped With Fbg Sensors in Industrial Piping Systems Subjected to Seismic Loads
,”
J. Loss Prev. Process Ind.
,
72
, p.
104576
.10.1016/j.jlp.2021.104576
16.
Bao
,
C. X.
,
Hao
,
H.
, and
Li
,
Z. X.
,
2011
, “
Vibration-Based Damage Detection of Pipeline System by HHT Method
,”
Appl. Mech. Mater.
,
99–100
, pp.
1067
1072
.10.4028/www.scientific.net/AMM.99-100.1067
17.
Huang
,
C.
,
Sun
,
P.
,
Nagarajaiah
,
S.
, and
Gopalakrishnan
,
S.
,
2013
, “
Time-Frequency Methods for Structural Health Monitoring of Deepwater Risers Subjected to Vortex Induced Vibrations
,”
Proceedings SPIE 8692, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems
, San Diego, CA, p.
86923E
.10.1117/12.2010592
18.
Alamdari
,
M. M.
,
Rakotoarivelo
,
T.
, and
Khoa
,
N. L. D.
,
2017
, “
A Spectral-Based Clustering for Structural Health Monitoring of the Sydney Harbour Bridge
,”
Mech. Syst. Signal Process.
,
87
, pp.
384
400
.10.1016/j.ymssp.2016.10.033
19.
Erazo
,
K.
,
Sen
,
D.
,
Nagarajaiah
,
S.
, and
Sun
,
L.
,
2019
, “
Vibration-Based Structural Health Monitoring Under Changing Environmental Conditions Using Kalman Filtering
,”
Mech. Syst. Signal Process.
,
117
, pp.
1
15
.10.1016/j.ymssp.2018.07.041
20.
Sandhu
,
H. K.
,
Bodda
,
S. S.
,
Sauers
,
S.
, and
Gupta
,
A.
,
2022
, “
Condition Monitoring of Nuclear Equipment-Piping Using Deep Learning
,”
International Conference on Structural Mechanics in Reactor Technology, IASMiRT
, Berlin/Potsdam, Germany, July 10–15, Paper No. We.4.F.3.
21.
Mohtasham Khani
,
M.
,
Vahidnia
,
S.
,
Ghasemzadeh
,
L.
,
Ozturk
,
Y. E.
,
Yuvalaklioglu
,
M.
,
Akin
,
S.
, and
Ure
,
N. K.
,
2020
, “
Deep-Learning-Based Crack Detection With Applications for the Structural Health Monitoring of Gas Turbines
,”
Struct. Health Monit.
,
19
(
5
), pp.
1440
1452
.10.1177/1475921719883202
22.
Sandhu
,
H. K.
,
Bodda
,
S. S.
, and
Gupta
,
A.
,
2022
, “
Deep Learning Framework for Post-Hazard Condition Monitoring of Nuclear Safety Systems
,”
International Workshop on Structural Health Monitoring, IWSHM
, Stanford, CA, Mar. 15–17.10.12783/shm2021/36253
23.
Tran-Ngoc
,
H.
,
Khatir
,
S.
,
De Roeck
,
G.
,
Bui-Tien
,
T.
, and
Abdel Wahab
,
M.
,
2019
, “
An Efficient Artificial Neural Network for Damage Detection in Bridges and Beam-Like Structures by Improving Training Parameters Using Cuckoo Search Algorithm
,”
Eng. Struct.
,
199
, p.
109637
.10.1016/j.engstruct.2019.109637
24.
Cofre-Martel
,
S.
,
Kobrich
,
P.
,
Lopez Droguett
,
E.
, and
Meruane
,
V.
,
2019
, “
Deep Convolutional Neural Network-Based Structural Damage Localization and Quantification Using Transmissibility Data
,”
Shock Vib.
,
2019
, pp.
1
27
.10.1155/2019/9859281
25.
Abdeljaber
,
O.
,
Avci
,
O.
,
Kiranyaz
,
S.
,
Gabbouj
,
M.
, and
Inman
,
D. J.
,
2017
, “
Real-Time Vibration-Based Structural Damage Detection Using One-Dimensional Convolutional Neural Networks
,”
J. Sound Vib.
,
388
, pp.
154
170
.10.1016/j.jsv.2016.10.043
26.
Nannan
,
L.
, and
Kanyandekwe
,
J. B.
,
2019
, “
The Detection of Structural Damage Using Convolutional Neural Networks on Vibration Signal
,” 2019 International Conference on Information and Communication Technology Convergence (
ICTC
), Jeju, South Korea, Oct. 16–18, pp.
407
411
.10.1109/ICTC46691.2019.8939881
27.
Jacimovic
,
N.
, and
D'Agaro
,
F.
,
2020
, “
On Piping Vibration Screening Criteria
,”
ASME J. Pressure Vessel Technol.
,
142
(
1
), p.
6
.
28.
Ni
,
D.
,
Zhang
,
N.
,
Gao
,
B.
,
Li
,
Z.
, and
Yang
,
M.
,
2020
, “
Dynamic Measurements on Unsteady Pressure Pulsations and Flow Distributions in a Nuclear Reactor Coolant Pump
,”
Energy
,
198
, p.
117305
.10.1016/j.energy.2020.117305
29.
Collet
,
A.
, and
Kallman
,
M.
,
2017
, Pipe Vibrations, Energiforsk, Stockholm, Sweden, Report No. 2017:351.
30.
Tian
,
J.
,
Yuan
,
C.
,
Yang
,
L.
,
Wu
,
C.
,
Liu
,
G.
, and
Yang
,
Z.
,
2016
, “
The Vibration Characteristics Analysis of Pipeline Under the Action of Gas Pressure Pulsation Coupling
,”
J. Failure Anal. Prev.
,
16
(
3
), pp.
499
505
.10.1007/s11668-016-0116-z
31.
Gao
,
P.
,
Qu
,
H.
,
Zhang
,
Y.
,
Yu
,
T.
, and
Zhai
,
J.
,
2020
, “
Experimental and Numerical Vibration Analysis of Hydraulic Pipeline System Under Multiexcitations
,”
Shock Vib.
,
2020
, pp.
1
13
.10.1155/2020/3598374
32.
Tyng
,
Y. H.
,
Chao
,
O. Z.
,
Kuan
,
K. K.
,
Ismail
,
Z.
,
Rahman
,
A. G. A.
, and
Tong
,
C. W.
,
2017
, “
Similitude Study of an in-Service Industrial Piping System Under High Flow Induced Vibration
,”
J. Mech. Sci. Technol.
,
31
(
8
), pp.
3705
3713
.10.1007/s12206-017-0713-0
33.
Hayashi
,
I.
, and
Kaneko
,
S.
,
2014
, “
Pressure Pulsations in Piping System Excited by a Centrifugal Turbomachinery Taking the Damping Characteristics Into Consideration
,”
J. Fluids Struct.
,
45
, pp.
216
234
.10.1016/j.jfluidstructs.2013.11.012
34.
Gülich
,
J. F.
,
2010
,
Centrifugal Pumps
,
Springer
,
Berlin Heidelberg, Berlin, Heidelberg
.
35.
Lu
,
H.
,
Wu
,
X.
, and
Huang
,
K.
,
2018
, “
Study on the Effect of Reciprocating Pump Pipeline System Vibration on Oil Transportation Stations
,”
Energies
,
11
(
1
), p.
132
.10.3390/en11010132
36.
Dai
,
C.
,
Zhang
,
Y.
,
Pan
,
Q.
,
Dong
,
L.
, and
Liu
,
H.
,
2021
, “
Study on Vibration Characteristics of Marine Centrifugal Pump Unit Excited by Different Excitation Sources
,”
J. Mar. Sci. Eng.
,
9
(
3
), p.
274
.10.3390/jmse9030274
37.
American Society of Mechanical Engineers Boiler and Pressure Vessel Committee
,
2015
, ASME Boiler and Pressure Vessel Code, Section II Materials, Part D, Report.
38.
American Society of Mechanical Engineers Boiler and Pressure Vessel Committee
,
2017
, ASME Boiler and Pressure Vessel Code, Section III-Subsection NB, Rules for Construction of Nuclear Facility Components, Report.
39.
American Society of Mechanical Engineers
,
2020
, “
ASME Operation and Maintenance of Nuclear Power Plants
,” Report.
40.
Kim
,
S.-W.
,
Choi
,
H.-S.
,
Jeon
,
B.-G.
, and
Hahm
,
D.-G.
,
2019
, “
Low-Cycle Fatigue Behaviors of the Elbow in a Nuclear Power Plant Piping System Using the Moment and Deformation Angle
,”
Eng. Failure Anal.
,
96
, pp.
348
361
.10.1016/j.engfailanal.2018.10.021
41.
Chen
,
M.
,
Lin
,
L.
,
Du
,
D.
,
Zhou
,
S.
,
Gao
,
H.
,
Wang
,
W.
, and
Shi
,
J.
,
2021
, “
Safety Assessment of the Small Welded Pipe System by the Test and FEA
,”
Int. J. Pressure Vessels Piping
,
194
, p.
104523
.10.1016/j.ijpvp.2021.104523
42.
Lin
,
L.
,
Athe
,
P.
,
Rouxelin
,
P.
,
Avramova
,
M.
,
Gupta
,
A.
,
Youngblood
,
R.
,
Lane
,
J.
, and
Dinh
,
N.
,
2021
, “
Development and Assessment of a Nearly Autonomous Management and Control System for Advanced Reactors
,”
Ann. Nucl. Energy
,
150
, p.
107861
.10.1016/j.anucene.2020.107861
43.
Sumner
,
T.
, and
Wei
,
T.
,
2012
, “
Benchmark Specifications and Data Requirements for EBR-II Shutdown Heat Removal Tests SHRT-17 and SHRT-45R
,” Revision 1,
Nuclear Engineering Division, Argonne National Laboratory
, Report No.
ANL-ARC-226
.https://publications.anl.gov/anlpubs/2012/06/73647.pdf
44.
ANSYS
,
2010
, “
ANSYS Mechanical APDL Command Reference
,” ANSYS Inc., Canonsburg, PA.
45.
Ju
,
B. S.
, and
Gupta
,
A.
,
2015
, “
Seismic Fragility of Threaded Tee-Joint Connections in Piping Systems
,”
Int. J. Pressure Vessels Piping
,
132–133
, pp.
106
118
.10.1016/j.ijpvp.2015.06.001
46.
Ryu
,
Y.
,
Gupta
,
A.
,
Jung
,
W.
, and
Ju
,
B.
,
2016
, “
A Reconciliation of Experimental and Analytical Results for Piping Systems
,”
Int. J. Steel Struct.
,
16
(
4
), pp.
1043
1055
.10.1007/s13296-016-0019-6
47.
Gupta
,
A.
,
Ryu
,
Y.
, and
Saigal
,
R. K.
,
2017
, “
Performance-Based Reliability of ASME Piping Design Equations
,”
ASME J. Pressure Vessel Technol.
,
139
(
3
), p.
10
.10.1115/1.4034584
48.
Sandhu
,
H. K.
,
Bodda
,
S. S.
, and
Gupta
,
A.
,
2023
, “
Post-Hazard Condition Assessment of Nuclear Piping-Equipment Systems: Novel Approach to Feature Extraction and Deep Learning
,”
Int. J. Pressure Vessels Piping
,
201
, p.
104849
.10.1016/j.ijpvp.2022.104849
49.
Argüelles
,
J.
, and
Casanova
,
E.
,
2015
, “
Steady-State Response of a Piping System Under Harmonic Excitations Considering Pipe-Support Friction With Variable Normal Loads
,”
ASME J. Pressure Vessel Technol.
,
137
(
5
), p.
051801
.10.1115/1.4029403
50.
Polzin
,
K. A.
,
2007
, “
Liquid-Metal Pump Technologies for Nuclear Surface Power
,” NASA Marshall Space Flight Center, Huntsville, AL, No. NASA/TM—2007–21485.
You do not currently have access to this content.