Abstract

Pipeline vibration induced by fluid flow can cause pipeline fatigue damage, which seriously endangers the safety of the operation. This paper aims to clarify the dynamic variation law of pipeline vibration induced by gas–liquid two-phase flow in the elbow and the influence of different gas–liquid ratios on the dynamic evolution of two-phase flow patterns. The volume of fluid (VOF) method is used to capture the flow pattern characteristics to explore the complex information of dynamic flow pattern evolution. The vibration characteristic mechanism corresponding to the evolution of the flow pattern is explored based on the time and frequency domain, and the origin of the exciting force of the elbow is explored according to the momentum balance equation. The simulation results show that the VOF method can well capture the characteristics of slug flow developed by the interphase instability mechanism. After phase space reconstruction, the dynamic evolution mechanism of the flow pattern is complex and the chaotic characteristics of slug flow are strong. The evolution of the flow pattern is related to the increase in wave height. The superficial velocity of the liquid phase is more sensitive to the flow pattern's formation mechanism than the gas phases. The amplitude of the wave strongly depends on the Vsg and Vsl. There is a strong correlation between the main exciting force pulsation and momentum flux pulsation.

References

1.
Blevins
,
R. D.
,
1979
, “
Flow-Induced Vibration in Nuclear Reactors: A Review
,”
Prog. Nucl. Energy
,
4
(
1
), pp.
25
49
.10.1016/0149-1970(79)90008-8
2.
Lin
,
S. Q.
,
2012
, “
Cause Analysis and Preventive Measures of Steam Pipeline Vibration
,”
Mech. Electr. Technol.
,
35
(
4
), pp.
139
140
.
3.
Kabiri-Samani
,
A. R.
,
2005
, “
Fluctuation of Air-Water Two-Phase Flow in Horizontal and Inclined Water Pipes
,”
ASME J. Fluids Eng.
,
129
(
1
), pp.
1
14
.10.1115/1.2375134
4.
Rahman
,
M. A.
,
Heidrick
,
T.
, and
Fleck
,
B. A.
,
2009
, “
A Critical Review of Advanced Experimental Techniques to Measure Two-Phase Gas/Liquid Flow
,”
Open Fuels Energy Sci. J.
,
2
(
1
), pp.
54
70
.10.2174/1876973X00902010054
5.
Chen
,
Y. T.
,
2020
,
Numerical Modeling and Analysis on Two-Phase Flow and Fluid-Induced Vibration of Elastic Pipes
,
Shanghai Jiaotong University
,
Shanghai, China
.
6.
Kojasoy
,
G.
,
Landis
,
F.
,
Kwame-Mensah
,
P.
, and
Chang
,
C. T.
,
1997
, “
Two-Phase Pressure Drop in Multiple Thick- and Thin-Orifice Plates
,”
Exp. Therm. Fluid Sci.
,
15
(
4
), pp.
347
358
.10.1016/S0894-1777(97)00003-4
7.
Alimonti
,
C.
,
Falcone
,
G.
, and
Bello
,
O.
,
2010
, “
Two-Phase Flow Characteristics in Multiple Orifice Valves
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1324
1333
.10.1016/j.expthermflusci.2010.06.004
8.
Tay
,
B. L.
, and
Thorpe
,
R. B.
,
2004
, “
Effects of Liquid Physical Properties on the Forces Acting on a Pipe Bend in Gas-Liquid Slug Flow
,”
Chem. Eng. Res. Des.
,
82
(
3
), pp.
344
356
.10.1205/026387604322870453
9.
Riverin
,
J. L.
, and
Pettigrew
,
M. J.
,
2007
, “
Vibration Excitation Forces Due to Two-Phase Flow in Piping Elements
,”
ASME J. Pressure Vessel Technol.
,
129
(
1
), pp.
7
13
.10.1115/1.2388994
10.
Liu
,
Y.
,
Miwa
,
S.
,
Hibiki
,
T.
,
Ishii
,
M.
,
Morita
,
H.
,
Kondoh
,
Y.
, and
Tanimoto
,
K.
,
2012
, “
Experimental Study of Internal Two-Phase Flow Induced Fluctuating Force on a 90° Elbow
,”
Chem. Eng. Sci.
,
76
, pp.
173
187
.10.1016/j.ces.2012.04.021
11.
Miwa
,
S.
,
Hibiki
,
T.
, and
Mori
,
M.
,
2016
, “
Analysis of Flow-Induced Vibration Due to Stratified Wavy Two-Phase Flow
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091302
.10.1115/1.4033371
12.
Bamidele
,
O. E.
,
Ahmed
,
W. H.
, and
Hassan
,
M.
,
2022
, “
Characterizing Two-Phase Flow-Induced Vibration in Piping Structures With U-Bends
,”
Int. J. Multiphase Flow
,
151
, p.
104042
.10.1016/j.ijmultiphaseflow.2022.104042
13.
Fletcher
,
J. A.
,
Kozakewich
,
H. P.
,
Hoffer
,
F. A.
,
Lage
,
J. M.
,
Weidner
,
N.
,
Tepper
,
R.
,
Pinkus
,
G. S.
,
Morton
,
C. C.
, and
Corson
,
J. M.
,
1991
, “
Diagnostic Relevance of Clonal Cytogenetic Aberrations in Malignant Soft-Tissue Tumors
,”
N. Engl. J. Med.
,
324
(
7
), pp.
436
442
.10.1056/NEJM199102143240702
14.
Bao
,
C. M.
,
Wu
,
G. X.
, and
Xu
,
G.
,
2017
, “
Simulation of Freefall Water Entry of a Finite Wedge With Flow Detachment
,”
Appl. Ocean Res.
,
65
, pp.
262
278
.10.1016/j.apor.2017.04.014
15.
Jeong
,
J. H.
, and
Yang
,
D. Y.
,
2015
, “
Finite Element Analysis of Transient Fluid Flow With Free Surface Using VOF (Volume‐of‐Fluid) Method and Adaptive Grid
,”
Int. J. Numer. Methods Fluids
,
26
(
10
), pp.
1127
1154
.10.1002/(SICI)1097-0363
16.
Araújo
,
J. D. P.
,
Miranda
,
J. M.
, and
Campos
,
J. B. L. M.
,
2015
, “
CFD Study of the Hydrodynamics of Slug Flow Systems: Interaction Between Consecutive Taylor Bubbles
,”
Int. J. Chem. React. Eng.
,
13
(
4
), pp.
541
549
.10.1515/ijcre-2014-0161
17.
Beavers
,
G. S.
, and
Plunkett
,
R.
,
1974
, “
Modeling of Flow-Induced Vibrations in Heat Exchangers and Nuclear Reactors
,”
ASME J. Fluids Eng.
,
96
(
4
), pp.
358
364
.10.1115/1.3447170
18.
Khan
,
U.
,
Pao
,
W.
, and
Sallih
,
N.
,
2022
, “
A Review: Factors Affecting Internal Two-Phase Flow-Induced Vibrations
,”
Appl. Sci.
,
12
(
17
), p.
8406
.10.3390/app12178406
19.
Zhu
,
H.-J.
,
Zhao
,
H.-L.
, and
Gao
,
Y.
,
2018
, “
Experimental Investigation of Vibration Response of a Free-Hanging Flexible Riser Induced by Internal Gas-Liquid Slug Flow
,”
China Ocean Eng.
,
32
(
6
), pp.
633
645
.10.1007/s13344-018-0065-2
20.
Yan
,
S.
,
Tan
,
Y. H.
, and
Chen
,
J. H.
,
2014
, “
Research Progress of Flow-Induced Vibration of Bellows
,”
J. Rocket Propul.
,
40
, pp.
16
21
.
21.
Gao
,
P.
,
Zhang
,
Y.
,
Liu
,
X.
,
Yu
,
T.
, and
Wang
,
J.
,
2020
, “
Vibration Analysis of Aero Parallel-Pipeline Systems Based on a Novel Reduced Order Modeling Method
,”
J. Mech. Sci. Technol.
,
34
(
2
), pp.
1
10
.10.1007/s12206-020-0705-3
22.
Parsi
,
M.
,
Agrawal
,
M.
,
Srinivasan
,
V.
,
Vieira
,
R. E.
,
Torres
,
C. F.
,
McLaury
,
B. S.
,
Shirazi
,
S. A.
,
Schleicher
,
E.
, and
Hampel
,
U.
,
2016
, “
Assessment of a Hybrid CFD Model for Simulation of Complex Vertical Upward Gas-Liquid Churn Flow
,”
Chem. Eng. Res. Des.
,
105
, pp.
71
84
.10.1016/j.cherd.2015.10.044
23.
Zhu
,
H.
,
Tang
,
Y.
,
Wang
,
J.
, and
Tang
,
L.
,
2017
, “
Flow Erosion and Flow Induced Vibration of Gas Well Relief Line With Periodic Fluctuation of Boosting Output
,”
J. Loss Prev. Process Ind.
,
46
, pp.
69
83
.10.1016/j.jlp.2017.01.018
24.
Zhu
,
H.
,
Wang
,
J.
,
Ba
,
B.
,
Wu
,
Z.
, and
Wang
,
W.
,
2015
, “
Numerical Investigation of Flow Erosion and Flow Induced Displacement of Gas Well Relief Line
,”
J. Loss Prev. Process Ind.
,
37
, pp.
19
32
.10.1016/j.jlp.2015.06.015
25.
Montoya-Hernandez
,
D. J.
,
Vazquez-Hernandez
,
A. O.
,
Cuamatzi
,
R.
, and
Hernandez
,
M. A.
,
2014
, “
Natural Frequency Analysis of a Marine Riser Considering Multiphase Internal Flow Behaviour
,”
Ocean Eng.
,
92
, pp.
103
113
.10.1016/j.oceaneng.2014.09.039
26.
Bamidele
,
O. E.
,
Ahmed
,
W. H.
, and
Hassan
,
M.
,
2019
, “
Two-Phase Flow-Induced Vibration of Piping Structure With Flow Restricting Orifices
,”
Int. J. Multiphase Flow
,
113
, pp.
59
70
.10.1016/j.ijmultiphaseflow.2019.01.002
27.
Brennen
,
C. E.
,
2005
,
Fundamentals of Multiphase Flow
,
Cambridge University Press
,
Cambridge, UK
.
28.
Mandhane
,
J. M.
,
Gregory
,
G. A.
, and
Aziz
,
K.
,
1974
, “
A Flow Pattern Map for Gas–Liquid Flow in Horizontal Pipes
,”
Int. J. Multiphase Flow
,
1
(
4
), pp.
537
553
.10.1016/0301-9322(74)90006-8
29.
Launder, B. E., and Spalding, D. B., 1974, “The Numerical Computation of Turbulent Flows,”
Comp. Meth. Appl. Mech. Eng.
, 3, pp.
269
289
.10.1016/0045-7825(74)90029-2
30.
Ishii
,
M.
, and
Hibiki
,
T.
,
2011
,
Thermo-Fluid Dynamics of Two-Phase Flow
, Springer, Berlin.
31.
Liang
,
Z.
,
Guo
,
C.
, and
Wang
,
C.
,
2022
, “
The Connection Between Flow Pattern Evolution and Vibration in 90-Degree Pipeline: Bidirectional Fluid-Structure Interaction
,”
Energy Sci. Eng.
,
10
(
2
), pp.
308
323
.10.1002/ese3.1031
You do not currently have access to this content.