Abstract

Thermal embrittlement of some cast austenitic stainless steels (CASS) occurs at reactor operating temperatures leading to very low fracture toughness. Because of their low aged toughness with high variability, flaw evaluations of CASS material need to be established with an understanding of the materials aged condition, especially since most U.S. pressurized water reactor (PWR) nuclear plants have been given plant life extensions for 60-year operation. A flaw evaluation procedure for CASS materials is presented here using a new statistical model developed to predict the toughness of fully aged CASS using the materials' chemical compositions. In this procedure, the dimensionless-plastic-zone-parameter (DPZP) analysis is used to determine when limit-load is applicable and also approximate the elastic-plastic correction factor (Z-factor) to predict the failure stress for CASS pipe/fittings with a circumferential surface crack. The procedure was validated against several CF8m pipe test results which include various pipe diameters, crack sizes, ferrite contents, failure modes. The as-developed flaw evaluation procedure was also used to determine the Z-factors for four different pipe diameters for a database of 274 pipe/elbows in U.S. PWR plants –solving 1096 sample problems to understand what range of Z-factors in U.S. PWR plants (for CF8m CASS materials). Finally, the applicability of the CF8m-based statistical model for use with CF3 and CF8 CASS materials was also verified with available test results. The outcome of this work has been implemented in an ASME boiler and pressure vessel (BPV) code case and has been approved in 2020 as Code Case N-906.

References

1.
Jayet-Gendrot
,
S.
,
Ould
,
P.
, and
Meylogan
,
T.
,
1995
, “
Fracture Toughness Assessment of in-Service Aged Primary Circuit Elbows Using Mini C(T) Specimens Taken From Outer Skin
,”
Nucl. Eng. Des.
,
184
(
1
), pp.
163
169
.
2.
LeDelliou
,
P.
,
Bezdikian
,
G.
,
Ould
,
P.
, and
Safa
,
N.
,
2006
, “
Full-Scale Test on an Aged Cast Duplex Stainless Steel Lateral Connection: Results and Analysis
,”
ASME
Paper No. PVP2006-IGPVT-11-94005.10.1115/PVP2006-IGPVT-11-94005
3.
Slama
,
G.
,
Petrequin
,
P.
,
Masson
,
S. H.
, and
Mager
,
T. R.
,
1983
, “
Effect of Aging on Mechanical Properties of Austenitic Stainless Steel Casting Welds
,”
SMiRT 7 Post-SMiRT Seminar 6 Assuring Structural Integrity of Steel Reactor Pressure Boundary Components, Monterey
,
CA
, Aug. 29–30.https://inis.iaea.org/search/search.aspx?orig_q=RN:16064532
4.
Ligneau
,
N.
,
Pages
,
C.
,
Akamatsu
,
M.
,
Pokor
,
C.
, and
Calonne-Chatelee
,
V.
,
2009
, “
Integrity and Life Assessment of Cast Duplex Stainless Steel Elbows Used in the Primary Loops of PWRs
,”
ASME
Paper No. PVP2009-77731.10.1115/PVP2009-77731
5.
Faidy
,
C.
,
2012
, “
Ageing Management of Cast Stainless Steel Components in French PWRs
,”
ASME
Paper No. PVP-2012-7884310.1115/PVP-2012-78843
6.
Chopra
,
O. K.
,
1994
, “
Estimation of Fracture Toughness of Cast Stainless Steels During Thermal Aging in LWR Systems
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No.
NUREG/CR-4513, Rev. 1
.https://www.osti.gov/servlets/purl/5561283
7.
Griesbach
,
T. J.
,
Marthandam
,
V.
, and
Qian
,
H.
,
2009
, “
Nondestructive Evaluation: Flaw Tolerance Evaluation of Thermally Aged Cast Austenitic Stainless Steel Piping
,” EPRI Palo Alto, CA, Report No. 1019128.
8.
Griesbach
,
T. J.
,
Marthandam
,
V.
,
Qian
,
H.
, and
O'Regan
,
P.
,
2009
, “
Flaw Tolerance Evaluation of CASS Piping Materials
,”
ASME
Paper No. PVP2009-77421.10.1115/PVP2009-77421
9.
Bamford
,
W. H.
,
Landerman
,
E. I.
, and
Diaz
,
E.
,
1985
, “
Thermal Aging of Cast Stainless Steel, and Its Impact on Piping Integrity
,”
ASME J. Eng. Mater. Technol.
,
107
(
1
), pp.
53
60
.10.1115/1.3225771
10.
Buchalet
,
C.
,
Meyzaud
,
Y.
, and
Taupin
,
P.
,
1985
, “
Effect of Long-Term Aging on the Critical Defect Sizes in Primary Piping Cast Stainless Steel Elbows
,”
Proceedings of the Second International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors
,
Monterey, CA
, Sept. 9–12.
11.
Diaz
,
A. A.
,
Doctor
,
S. R.
,
Hildebrand
,
B. P.
,
Simonen
,
F. A.
,
Schuster
,
G. L.
,
Andersen
,
E. S.
,
McDonald
,
G. P.
, and
Hasse
,
R. D.
,
1998
, “
Evaluation of Ultrasonic Inspection Techniques for Coarse-Grained Materials
,” Pacific Northwest National Laboratory, Washington, DC, Report No.
NUREG/CR-6594, PNNL-11171
.https://www.nrc.gov/docs/ML1407/ML14071A001.pdf
12.
Lee
,
S.
,
Kuo
,
P. T.
,
Wichman
,
K.
, and
Chopra
,
O.
,
1997
, “
Flaw Evaluation of Thermally Aged Cast Stainless Steel in Light-Water Reactor Applications
,”
Int. J. Pressure Vessels Pip.
,
72
(
1
), pp.
37
44
.10.1016/S0308-0161(97)00007-0
13.
Griesbach
,
T. J.
,
Harris
,
D. O.
,
Cofie
,
N. G.
,
Chockie
,
A.
, and
Dedhia
,
D.
,
2013
, “
Basis for ASME Section XI Code Case for Flaw Tolerance Evaluation of CASS Piping
,”
ASME
Paper No. PVP2013-97712.10.1115/PVP2013-97712
14.
Materials Reliability Program
,
2013
, “
Technical Basis for ASME Section XI Code Case on Flaw Tolerance of Cast Austenitic Stainless Steel (CASS) Piping
,” EPRI, Palo Alto, CA, Report No. MRP-362.
15.
Uddin
,
M.
,
Kurth
,
R.
,
Sallaberry
,
C.
,
Wilkowski
,
G.
,
Brust
,
F.
, and
Rudland
,
D.
,
2016
, “
Critical Flaw Evaluation of Cass: Deterministic and Probabilistic Fracture Analyses
,”
ASME
Paper No. PVP2016-63850.10.1115/PVP2016-63850
16.
Uddin
,
M.
,
Wilkowski
,
G.
,
Shim
,
D.-J.
,
Brust
,
F.
, and
Rudland
,
D.
,
2015
, “
Comparison of Different Thermal Aging Models to Assess Fully Aged Toughness in Cast Austenitic Stainless Steels
,”
ASME
Paper No. PVP2015-45790.10.1115/PVP2015-45790
17.
]
,
Uddin
,
M.
,
Wilkowski
,
G.
,
Pothana
,
S.
, and
Brust
,
F.
,
2017
, “
Flaw Evaluation Procedure for Cast Austenitic Stainless Steel Materials Using Thermal Aging Models
,”
ASME
Paper No. PVP2017-66111.10.1115/PVP2017-66111
18.
Kawaguchi
,
S.
,
Nagasaki
,
T.
, and
Koyama
,
K.
,
2005
, “
Prediction Method of Tensile Properties and Fracture Toughness of Thermally Aged Cast Duplex Stainless Steel Piping
,”
ASME
Paper No. PVP2005-7152.10.1115/PVP2005-7152
19.
Suzuki
,
I.
,
Koyama
,
M.
,
Kawaguchi
,
S.
,
Mimaki
,
H.
,
Akiyama
,
M.
,
Okubo
,
T.
,
Mishima
,
Y.
, and
Mager
,
T.
,
1995
, “
Long Term Thermal Aging of Cast Duplex Stainless Steels
,”
International Conference on Nuclear Engineering
, Vol. 5,
Kyoto, Japan
,
Apr. 23–27, p. 253
.https://www.osti.gov/biblio/277817-long-term-thermal-aging-cast-duplex-stainless-steels
20.
Mezaud
,
Y.
,
1988
, “
Tearing Resistance of Aged Cast Austenitic Stainless Steels
,” Proceedings of the International ENS/ANS Conference on Thermal Reactor Safety, Paris, France, Oct. 2–7, p. 417, Paper No.
NUCSAFE88
.https://inis.iaea.org/search/search.aspx?orig_q=RN:21015020
21.
Sallaberry
,
C.
,
Uddin
,
M.
, and
Wilkowski
,
G.
,
2019
, “
An Improved Regression Analysis for Prediction for Toughness of Fully Aged Cast Stainless Steels
,”
SMiRT 25 Conference
, Charlotte, NC, Aug. 4–9.https://repository.lib.ncsu.edu/handle/1840.20/37590
22.
JNES Report, 2006
, “
Investigation Report on the Integrity of Thermally-Embrittled Cast Stainless Steel Pipe
,” JNES, Japan, Report No.
JNES-0602.
23.
Anderson
,
M. T.
,
Crawford
,
S. L.
,
Cumblidge
,
S. E.
,
Denslow
,
K. M.
,
Diaz
,
A. A.
, and
Doctor
,
S. R.
,
2007
, “
Assessment of Crack Detection in Heavy-Walled Cast Stainless Steel Piping Welds Using Advanced Low-Frequency Ultrasonic Methods
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No.
NUREG/CR-6933
.https://www.osti.gov/servlets/purl/921260
24.
Jayet-Gendrot
,
S.
,
Ould
,
P.
, and
Balladon
,
P.
,
1994
, “
Effects of Fabrication and Test Parameters on the Fracture Toughness of Aged Cast Duplex Stainless Steels
,”
Proceeding of International Symposium of FONTEVRAUD III
, Fontevraud III, France, Sept. 12–16, p.
404
.https://inis.iaea.org/search/search.aspx?orig_q=RN:26071674
25.
Kanninen
,
M. F.
,
Broek
,
D.
,
Marschall
,
C. W.
,
Rybicki
,
E. F.
,
Sampath
,
S. G.
,
Simonen
,
F. A.
, and
Wilkowski
,
G. M.
,
1976
, “
Mechanical Fracture Predictions for Sensitized Stainless Steel Piping With Circumferential Cracks
,” EPRI, Palo Alto, CA, EPRI Report No.
NP-192
. https://inis.iaea.org/search/search.aspx?orig_q=RN:12642181
26.
Kurihara
,
R.
,
Ueda
,
S.
, and
Sturm
,
D.
, and
others
,
1988
, “
Estimation of the Ductile Unstable Fracture of Pipe With a Circumferential Surface Crack Subjected to Bending
,”
Nucl. Eng. Des.
,
106
(
2
), pp.
265
273
.10.1016/0029-5493(88)90283-X
27.
EPRI
,
1986
, “
An Evaluation of Flaws in Austenitic Steel Piping, Technical basis document for ASME IWB-3640 analysis procedure, prepared by Section XI Task Group for Piping Flaw Evaluation
,” EPRI, Palo Alto, CA, EPRI Report No. NP-4690-SR.
28.
Brust
,
F.
,
Scott
,
P.
,
Rahman
,
S.
,
Ghadiali
,
N.
,
Kilinski
,
T.
,
Francini
,
R.
,
Krishnaswamy
,
P.
, and
Wilkowski
,
G.
,
1995
, “
Assessment of Short Through-Wall Cracks in Pipes - Experiments and Analyses
,”
U. S. Nuclear Regulatory Commission
,
Washington, DC
, Report No. NUREG/CR-6235.
29.
Wilkowski
,
G.
, and
Scott
,
P.
,
1989
, “
A Statistical Based Circumferentially Cracked Pipe Fracture Mechanics Analysis for Design on Code Implementation
,”
Nucl. Eng. Des.
,
111
(
1
), pp.
173
187
.10.1016/0029-5493(89)90288-4
30.
Wilkowski
,
G. M.
,
Olson
,
R. J.
, and
Scott
,
P. M.
,
1998
, “
State-of-the-Art Report on Piping Fracture Mechanics
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No.
NUREG/CR-6540, BMI-2196
.https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/NUREGCR6540.xhtml
You do not currently have access to this content.