Abstract

In this work, improved creep-fatigue life prediction models based on time fraction (TF) and ductility exhaustion (DE) rule are established for creep-fatigue life prediction of components at elevated temperatures. Cyclic softening/hardening and stress relaxation models for cyclic softening/hardening material are incorporated in the model. Materials data conducted by authors and collected from references are employed for validations. Results indicated that the improved models proposed could present more realistic evolution behavior of materials than the half-life models. The differences of the predicted lives based on the improved models and half-life models are dependent on cyclic behaviors of materials. The predicted life by the improved model is lower than that gained by the half-life model for cyclic softening steels, while it is higher than that by the half-life model for cyclic hardening steels. In addition, the DE rule could overcome the influence of cyclic softening/hardening on creep-fatigue life prediction more significantly than the TF rule.

References

1.
Zhang
,
S. L.
, and
Xuan
,
F. Z.
,
2017
, “
Interaction of Cyclic Softening and Stress Relaxation of 9-12% Cr Steel Under Strain-Controlled Fatigue-Creep Condition: Experimental and Modeling
,”
Int. J. Plasticity
,
98
, pp.
45
64
.10.1016/j.ijplas.2017.06.007
2.
Xuan
,
F. Z.
, and
Gong
,
J. G.
,
2020
,
Fundamental and Approaches for Damage Mode-Based Design of Pressure Vessels
,
Science Press
,
Beijing, China
.
3.
Zhang
,
X. C.
,
Tu
,
S. T.
, and
Xuan
,
F. Z.
,
2014
, “
Creep–Fatigue Endurance of 304 Stainless Steels
,”
Theor. Appl. Fract. Mech.
,
71
, pp.
51
66
.10.1016/j.tafmec.2014.05.001
4.
Yan
,
X. L.
,
Zhang
,
X. C.
,
Tu
,
S. T.
,
Mannan
,
S. L.
,
Xuan
,
F. Z.
, and
Lin
,
Y. C.
,
2015
, “
Review of Creep–Fatigue Endurance and Life Prediction of 316 Stainless Steels
,”
Int. J. Pressure Vessels Piping
,
126–127
, pp.
17
28
.10.1016/j.ijpvp.2014.12.002
5.
Gong
,
J. G.
,
Gong
,
C.
,
Xuan
,
F. Z.
, and
Chen
,
H.
,
2019
, “
Notch Effect on Structural Strength of Components at Elevated Temperature Under Creep, Fatigue, and Creep-Fatigue Loading Conditions: Phenomenon and Mechanism
,”
ASME J. Pressure Vessel Technol.
,
141
(
5
), p.
050801
.10.1115/1.4043843
6.
Ogata
,
T.
,
2010
, “
Creep-Fatigue Damage and Life Prediction of Alloy Steels
,”
Mater. High Temp.
,
27
(
1
), pp.
11
19
.10.3184/096034009X12602021834640
7.
Gong
,
J. G.
, and
Xuan
,
F. Z.
,
2017
, “
Notch Behavior of Components Under the Stress-Controlled Creep–Fatigue Condition: Weakening or Strengthening?
,”
ASME J. Pressure Vessel Technol.
,
139
(
1
), p.
011407
.10.1115/1.4033731
8.
Takahashi
,
Y.
,
2008
, “
Study on Creep-Fatigue Evaluation Procedures for High-Chromium Steels—Part I: Test Results and Life Prediction Based on Measured Stress Relaxation
,”
Int. J. Pressure Vessels Piping
,
85
(
6
), pp.
406
422
.10.1016/j.ijpvp.2007.11.008
9.
Takahashi
,
Y.
,
2008
, “
Study on Creep-Fatigue Evaluation Procedures for High Chromium Steels—Part II: Sensitivity to Calculated Deformation
,”
Int. J. Pressure Vessels Piping
,
85
(
6
), pp.
423
440
.10.1016/j.ijpvp.2007.11.006
10.
Takahashi
,
Y.
, and
Gandy
,
D.
, “
Creep-Fatigue Behavior of Grade 92 Steel and Its Predictability
,”
ASME
Paper No. PVP2011-57976. 10.1115/PVP2011-57976
11.
Wang
,
R. Z.
,
Zhang
,
X. C.
,
Gong
,
J. G.
,
Zhu
,
X. M.
,
Tu
,
S. T.
, and
Zhang
,
C. C.
,
2017
, “
Creep-Fatigue Life Prediction and Interaction Diagram in Nickel-Based GH4169 Superalloy at 650 °C Based on Cycle-by-Cycle Concept
,”
Int. J. Fatigue
,
97
, pp.
114
123
.10.1016/j.ijfatigue.2016.11.021
12.
Wang
,
R. Z.
,
Zhang
,
X. C.
,
Tu
,
S. T.
,
Zhu
,
S. P.
, and
Zhang
,
C. C.
,
2016
, “
A Modified Strain Energy Density Exhaustion Model for Creep–Fatigue Life Prediction
,”
Int. J. Fatigue
,
90
, pp.
12
22
.10.1016/j.ijfatigue.2016.03.005
13.
Wang
,
R. Z.
,
Zhu
,
X. M.
,
Zhang
,
X. C.
,
Tu
,
S. T.
,
Gong
,
J. G.
, and
Zhang
,
C. C.
,
2017
, “
A Generalized Strain Energy Density Exhaustion Model Allowing for Compressive Hold Effect
,”
Int. J. Fatigue
,
104
, pp.
61
71
.10.1016/j.ijfatigue.2017.07.008
14.
Priest
,
R. H.
, and
Ellison
,
E. G.
,
1981
, “
A Combined Deformation Map-Ductility Exhaustion Approach to Creep-Fatigue Analysis
,”
Mater. Sci. Eng.
,
49
(
1
), pp.
7
17
.10.1016/0025-5416(81)90128-2
15.
Robinson
,
E. L.
,
1952
, “
Effect of Temperature Variation on the Long-Time Rupture Strength of Steels
,”
Trans ASME
,
74
(
5
), pp.
777
781
.https://www.scirp.org/reference/ReferencesPapers.aspx?ReferenceID=2244949
16.
Ainsworth
,
R. A.
,
2006
, “
R5 Procedures for Assessing Structural Integrity of Components Under Creep and Creep-Fatigue Conditions
,”
Metall. Rev.
,
51
(
2
), pp.
107
126
.10.1179/174328006X79463
17.
Afcen
,
2015
, “
Design and Construction Rules for Mechanical Components of Nuclear Installations: High Temperature, Research and Fusion Reactors, RCC-MRx
,” Lyon, France.
18.
ASME,
2015
, “
Section III, Rules for Construction of Nuclear Facility Components, Division 1—Subsection NH
,”
ASME
,
New York
, Standard No. BPVC-III-NH.
19.
Spindler
,
M. W.
,
Payten
,
W. M.
,
Saxena
,
A.
,
Dogan
,
B.
, and
Dean
,
S. W.
,
2011
, “
Advanced Ductility Exhaustion Methods for the Calculation of Creep Damage During Creep-Fatigue Cycling
,”
J. ASTM Int.
,
8
(
7
), p.
103806
.10.1520/JAI103806
20.
Pineau
,
A.
, and
Antolovich
,
S. D.
,
2015
, “
High Temperature Fatigue: Behaviour of Three Typical Classes of Structural Materials
,”
High Temp. Technol.
,
32
(
3
), pp.
298
317
.10.1179/0960340914Z.00000000072
21.
Wareing
,
J.
,
1981
, “
Creep-Fatigue Behaviour of Four Casts of Type 316 Stainless Steel
,”
Fatigue Fract. Eng. Mater. Struct.
,
4
(
2
), pp.
131
145
.10.1111/j.1460-2695.1981.tb01115.x
22.
Parker
,
J.
,
2015
, “
EPRI Creep–Fatigue Achievements in Support of Safe and Reliable Flexible Operation of Power Plant Components
,”
Strength, Fracture and Complexity,
9
(
1
), pp.
71
86
.10.3233/SFC-150180
23.
Natesan
,
K.
,
Li
,
M
,
Majumdar
,
S.
, and
Nanstad
,
R. K.
,
2012
, “
Code Qualification of Structural Materials for AFCI Advanced Recycling Reactors
,” Argonne National Laboratory, Lemont, IL.https://digital.library.unt.edu/ark:/67531/metadc846519/
24.
Feltham
,
P.
,
1961
, “
Stress Relaxation in Alpha-Iron at Low Temperatures
,”
Philos. Mag.
,
6
(
67
), pp.
847
850
.10.1080/14786436108243341
25.
Benjamin
,
F.
,
Maxime
,
S.
,
Alexandra
,
R.
,
Françoise
,
B.
, and
André
,
P.
,
2009
, “
Microstructural Evolutions and Cyclic Softening of 9%Cr Martensitic Steels
,”
J. Nucl. Mater.
,
386–388
(
2
), pp.
71
74
.10.1016/j.jnucmat.2008.12.061
26.
Golański
,
G.
, and
Mroziński
,
S.
,
2013
, “
Low Cycle Fatigue and Cyclic Softening Behaviour of Martensitic Cast Steel
,”
Eng. Failure Anal.
,
35
(
26
), pp.
692
702
.10.1016/j.engfailanal.2013.06.019
27.
Armas
,
A. F.
,
Petersen
,
C.
,
Schmitt
,
R.
,
Avalos
,
M.
, and
Alvarez
,
I.
,
2004
, “
Cyclic Instability of Martensite Laths in Reduced Activation Ferritic/Martensitic Steels
,”
J. Nucl. Mater.
,
329–333
(
8
), pp.
252
256
.10.1016/j.jnucmat.2004.04.045
28.
Ye
,
D.
,
Matsuoka
,
S.
,
Nagashima
,
N.
, and
Suzuki
,
N.
,
2006
, “
The Low-Cycle Fatigue, Deformation and Final Fracture Behaviour of an Austenitic Stainless Steel
,”
Mater. Sci. Eng. A
,
415
(
1–2
), pp.
104
117
.10.1016/j.msea.2005.09.081
29.
Paul
,
S. K.
,
Sivaprasad
,
S.
,
Dhar
,
S.
, and
Tarafder
,
S.
,
2010
, “
Cyclic Plastic Deformation and Cyclic Hardening/Softening Behavior in 304 LN Stainless Steel
,”
Theor. Appl. Fract. Mech.
,
54
(
1
), pp.
63
70
.10.1016/j.tafmec.2010.06.016
30.
Holmström
,
S.
, and
Auerkari
,
P.
,
2013
, “
A Robust Model for Creep-Fatigue Life Assessment
,”
Mater. Sci. Eng. A
,
559
, pp.
333
335
.10.1016/j.msea.2012.08.107
31.
Prasad Reddy
,
G. V.
,
Sandhya
,
R.
,
Sankaran
,
S.
,
Parameswaran
,
P.
, and
Laha
,
K.
,
2015
, “
Creep–Fatigue Interaction Behavior of 316 LN Austenitic Stainless Steel With Varying Nitrogen Content
,”
Mater. Des.
,
88
, pp.
972
982
.10.1016/j.matdes.2015.09.007
32.
Barrett
,
P. R.
,
Ahmed
,
R.
,
Menon
,
M.
, and
Hassan
,
T.
,
2016
, “
Isothermal Low-Cycle Fatigue and Fatigue-Creep of Haynes 230
,”
Int. J. Solids Struct.
,
88–89
, pp.
146
164
.10.1016/j.ijsolstr.2016.03.011
33.
Li
,
M
,
Soppet
,
W K
,
Majumdar
,
S
,
Rink
,
D
, and
Natesan
,
K.
,
2012
, “
Final Report on Improved Creep-Fatigue Models on Advanced Materials for SFR Applications
,” Argonne National Laboratory, Lemont, IL.https://pdfs.semanticscholar.org/37ad/2557dc26ae97561e8f5240593b1b917a507a.pdf
34.
Wen
,
J. F.
,
Tu
,
S. T.
,
Xuan
,
F. Z.
,
Zhang
,
X. W.
, and
Gao
,
X. L.
,
2016
, “
Effects of Stress Level and Stress State on Creep Ductility: Evaluation of Different Models
,”
J. Mater. Sci. Technol.
,
32
(
8
), pp.
695
704
.10.1016/j.jmst.2016.02.014
35.
Spindler
,
M. W.
,
2004
, “
The Multiaxial and Uniaxial Creep Ductility of Type 304 Steel as a Function of Stress and Strain Rate
,”
Mater. High Temperatures
,
21
(
1
), pp.
47
52
.10.1179/mht.2004.007
36.
Kimura
,
K
, and,
Yaguchi
,
M.
,
2016
, “
Re-Evaluation of Long-Term Creep Strength of Base Metal of ASME Grade 91 Type Steel
,”
ASME
Paper No. PVP2016-63355. 10.1115/PVP2016-63355
37.
National Research Institute for Metals,
1996
, “
NRIM Creep Data Sheet No. 42
,”
National Research Institute for Metals
,
Tsukuba, Japan
.
38.
National Research Institute for Metals,
2005
, “
NRIM Creep Data Sheet No. 45A
,”
National Research Institute for Metals
,
Tsukuba, Japan
.
You do not currently have access to this content.