Abstract

Explosion containment vessels are widely used in many fields. Here, the detonation impact load of explosives in a cylindrical closed explosion containment vessel partially filled with sandy soil was studied. A three-dimensional numerical model of the explosion containment vessel was established by using finite element code ls-dyna. To calibrate this numerical model, we carried out an explosion loading experiment of the explosion containment vessel. Then, the experimental data and the numerical simulation results were compared, and a good agreement between them was obtained. The calibrated numerical model was used to investigate the explosive impact load generated by explosives in a cylindrical explosion containment vessel. The results reveal the attenuation law of shock wave overpressure and the distribution characteristics of the maximum peak overpressure of the shock wave on the inner wall of the cylindrical explosion containment vessel.

References

1.
Dong
,
Q.
,
Hu
,
B. Y.
,
Chen
,
S. Y.
, and
Gu
,
Y.
,
2012
, “
Engineering Design of a Multiple-Use Spherical Explosion Containment Vessel Subjected to Internal Blast Loading From 25 kg TNT High Explosive
,”
ASME J. Pressure Vessel Technol. Trans.
,
134
(
2
), p. 021205.10.1115/1.4005397
2.
Moriyama
,
K.
,
Takagi
,
S.
,
Muramatsu
,
K.
,
Nakamura
,
H.
, and
Maruyama
,
Y.
,
2006
, “
Evaluation of Containment Failure Probability by Ex-Vessel Steam Explosion in Japanese LWR Plants
,”
J. Nucl. Sci. Technol.
,
43
(
7
), pp.
774
784
.10.1080/18811248.2006.9711159
3.
Sui
,
Y. G.
,
Zhang
,
D. Z.
,
Tang
,
S. Y.
,
Li
,
J.
, and
Lin
,
Q. Z.
,
2015
, “
Theoretical Analysis of a Reactive Reinforcement Method for Cylindrical Explosion-Containment Vessels
,”
ASME J. Pressure Vessel Technol. Trans.
,
137
(
1
), p.
011206
.
4.
Yan
,
X. R.
,
Li
,
X. J.
,
Wang
,
X. H.
, and
Yan
,
H. H.
,
2018
, “
Synthesis of Alumina-Bonded Polycrystalline Diamond by Detonation
,”
Ceram. Int.
,
44
(
3
), pp.
2635
2642
.10.1016/j.ceramint.2017.10.088
5.
Yan
,
X. Y.
,
Li
,
X. J.
,
Wang
,
X. H.
,
Yan
,
H. H.
, and
Xie
,
X. H.
,
2018
, “
Microstructural Features and Thermal Stability of Alumina-Bonded Nano-Polycrystalline Diamond Synthesized by Detonation Sintering
,”
Ceram. Int.
,
44
(
18
), pp.
22045
22052
.10.1016/j.ceramint.2018.08.350
6.
Cai
,
Q. Y.
,
Zeng
,
X. W.
, and
Hu
,
Y. L.
,
2003
, “
Numerical Simulations on Steel-Concrete Blast Chamber Under the Internal Explosive Load
,”
J. Natl. Defense Univ. Sci. Technol.
,
25
(
3
), pp.
28
32
. https://www.researchgate.net/publication/290559852_Numerical_simulations_on_steel-concrete_blast_chamber_under_the_internal_explosive_load
7.
Duan
,
Z. P.
, and
Li
,
Y. B.
,
2003
, “
Design of Blast Chamber for Break Out Affair and Its Life-Span Evaluation
,”
Chin. J. High Pressure Phys.
,
17
(
4
), pp.
295
300
.
8.
Chen
,
S. Y.
,
Hu
,
B. Y.
,
Yan
,
G. U.
, and
Dong
,
Q.
,
2010
, “
Experimental Investigation on Dynamic Response of Spherical Explosive Chamber
,”
Acta Armamentarii
,
31
(
4
), pp.
504
509
.https://www.researchgate.net/publication/288158566_Experimental_investigation_on_dynamic_response_of_spherical_explosive_chamber
9.
Baker
,
W. E.
,
1960
, “
The Elastic-Plastic Response of Thin Spherical Shells to Internal Blast Loading
,”
ASME J. Appl. Mech.
,
27
(
1
), pp.
139
144
.10.1115/1.3643888
10.
Baker
,
W. E.
,
1961
, “
Axisymmetric Modes of Vibration of Thin Spherical Shell
,”
ASME J. Acoust. Soc. Am.
,
33
(
12
), pp.
1749
1758
.10.1121/1.1908562
11.
Baker
,
W. E.
,
Hu
,
W. C. L.
, and
Jackson
,
T. R.
,
1966
, “
Elastic Response of Thin Spherical Shells to Axisymmetric Blast Loading
,”
ASME J. Appl. Mech.
,
33
(
4
), pp.
800
806
.10.1115/1.3625185
12.
Zhao
,
S. D.
,
1989
, “
Blast Chamber
,”
Explos. Shock Waves
,
9
(
1
), pp.
85
96
.
13.
Dong
,
Q.
,
Li
,
Q. M.
, and
Zheng
,
J. Y.
,
2010
, “
Interactive Mechanisms Between the Internal Blast Loading and the Dynamic Elastic Response of Spherical Containment Vessels
,”
Int. J. Impact Eng.
,
37
(
4
), pp.
349
358
.10.1016/j.ijimpeng.2009.10.004
14.
Esparza
,
E. D.
,
Stacy
,
H.
, and
Wackerle
,
J.
,
1996
, “
Proof Testing of an Explosion Containment Vessel
,”
Los Alamos National Lab
, Santa Fe, NM.10.2172/383637
15.
Kubota
,
S.
,
Saburi
,
T.
,
Katoh
,
K.
,
Homae
,
T.
,
Ogata
,
Y.
, and
Iida
,
M.
,
2010
, “
Development of Compact Blast Containment Vessel for 10 kg Explosive
,”
Mater. Sci. Forum, Trans. Tech. Publ.
,
638–642
, pp.
1047
1052
.10.4028/www.scientific.net/MSF.638-642.1047
16.
Wu
,
C. Q.
,
Lukaszewicz
,
M.
,
Schebella
,
K.
, and
Antanovskii
,
L.
,
2013
, “
Experimental and Numerical Investigation of Confined Explosion in a Blast Chamber
,”
J. Loss Prev. Process Ind.
,
26
(
4
), pp.
737
750
.10.1016/j.jlp.2013.02.001
17.
Cao
,
Y. Z.
,
Lu
,
Z. S.
,
Guan
,
H. A.
, and
Zhang
,
Y. P.
,
2001
, “
Numerical Simulations of Blast Flowfields in Closed Blast-Resistant Containers
,”
Chin. J. High Pressure Phys.
,
15
(
2
), pp.
127
133
.
18.
Dragos
,
J.
,
Wu
,
C. Q.
, and
Oehlers
,
D. J.
,
2013
, “
Simplification of Fully Confined Blasts for Structural Response Analysis
,”
Eng. Struct.
,
56
, pp.
312
326
.10.1016/j.engstruct.2013.05.018
19.
Xu
,
W. Z.
,
Wu
,
W. G.
, and
Lin
,
Y. S.
,
2018
, “
Numerical Method and Simplified Analytical Model for Predicting the Blast Load in a Partially Confined Chamber
,”
Comput. Math. Appl.
,
76
(
2
), pp.
284
314
.10.1016/j.camwa.2018.04.019
20.
Xu
,
W. Z.
,
Kong
,
X. S.
,
Zheng
,
C.
, and
Wu
,
W. G.
,
2018
, “
Numerical Method for Predicting the Blast Wave in Partially Confined Chamber
,”
Math. Probl. Eng.
,
2018
(
PT.2
), pp.
1
17
.
21.
Edri
,
I. E.
,
Grisaro
,
H. Y.
, and
Yankelevsky
,
D. Z.
,
2019
, “
TNT Equivalency in an Internal Explosion Event
,”
J. Hazard. Mater.
,
374
, pp.
248
257
.10.1016/j.jhazmat.2019.04.043
22.
Hallquist
,
J. O.
,
2006
, “
LS-DYNA Theory Manual
,”
Livermore Software Technology Corporation
,
Livermore, CA
.
23.
Hallquist
,
J. O.
,
2018
, “
LS-DYNA Keyword User's Manual
,”
Livermore Software Technology Corporation
,
Livermore, CA
.
24.
Jones
,
N.
,
2011
,
Structural Impact
,
Cambridge University Press
,
Cambridge, UK
.
25.
Beshara
,
F. B. A.
,
1994
, “
Modelling of Blast Loading on Aboveground Structures—I: General Phenomenology and External Blast
,”
Comput. Struct.
,
51
(
5
), pp.
585
596
.10.1016/0045-7949(94)90066-3
You do not currently have access to this content.