Abstract

Probabilistic fracture mechanics (PFM) is considered to be a promising methodology in structural integrity assessments of pressure-boundary components in nuclear power plants since it can rationally represent the inherent probabilistic distributions for influence parameters without over-conservativeness. To strengthen the applicability of PFM methodology in Japan, Japan Atomic Energy Agency has developed a PFM analysis code PASCAL4 which enables the failure frequency evaluation of reactor pressure vessels (RPVs) considering neutron irradiation embrittlement and thermal transients. PASCAL4 is expected to make a significant contribution to the probabilistic integrity assessment of Japanese RPVs. In this study, PFM analysis for a Japanese model RPV in a pressurized water reactor (PWR) was conducted using PASCAL4, and the effects of nondestructive examination (NDE) and neutron flux reduction on failure frequencies of the RPV were quantitatively evaluated. From the analysis results, it is concluded that PASCAL4 is useful for probabilistic integrity assessments of embrittled RPVs and can enhance the applicability of PFM methodology.

References

1.
Japan Electric Association
,
2016
, “
Method of Verification Tests of the Fracture Toughness for Nuclear Power Plant Components
,” Japan Electric Association, Tokyo, Japan, Standard No. JEAC4206-2016 (in Japanese).
2.
Structural Integrity Associates
,
1998
, “
Vessel Inspection Program Evaluation for Reliability
,” VIPER Version 1.2, Structural Integrity Associates, San Jose, CA.
3.
Williams
,
P. T.
,
Dickson
,
D. L.
,
Bass
,
B. R.
, and
Klasky
,
H. B.
,
2016
, “
Fracture Analysis of Vessels—Oak Ridge FAVOR, v16.1, Computer Code: Theory and Implementation of Algorithms, Methods, and Correlations
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No.
ORNL/LTR-2016/309
.https://www.nrc.gov/docs/ML1627/ML16273A033.pdf
4.
Katsuyama
,
J.
,
Masaki
,
K.
,
Miyamoto
,
Y.
, and
Li
,
Y.
,
2018
, “
User's Manual and Analysis Methodology of Probabilistic Fracture Mechanics Analysis Code PASCAL4 for Reactor Pressure Vessel
,” Japan Atomic Energy Agency, Tokai, Ibaraki, Japan, Report No.
JAEA-Data/Code 2017-015
(in Japanese).https://inis.iaea.org/search/search.aspx?orig_q=RN:49093492
5.
U.S. Nuclear Regulatory Commission
,
2010
, “
Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events
,”
Title 10, Code of Federal Regulations, Part 50, Section 50.61a
, U.S. Nuclear Regulatory Commission, Rockville, MD.https://www.federalregister.gov/documents/2010/01/04/E9-31146/alternate-fracture-toughness-requirements-for-protection-against-pressurized-thermal-shock-events
6.
U.S. Nuclear Regulatory Commission
,
1984
, “
Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events
,”
Title 10, Code of Federal Regulations, Part 50, Section 50.61
, U.S. Nuclear Regulatory Commission, Rockville, MD.https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0061.html
7.
Boiling Water Reactor Vessel & Internals Project and Electric Power Research Institute
,
1995
, “
BWR Reactor Pressure Vessel Shell Weld Inspection Recommendations (BWRVIP-05)
,” BWR Vessel and Internals Project, Palo Alto, CA, Report No.
EPRI TR-105697
.https://www.nrc.gov/docs/ML0322/ML032200246.pdf
8.
Westinghouse Electric Company LLC
,
2011
, “
Risk-Informed Extension of the Reactor Vessel in-Service Inspection Interval
,”
ASME
Paper No. PVP2011-57971.10.1115/PVP2011-57971
9.
Purtscher
,
P.
,
Sheng
,
S.
, and
Dickson
,
D. L.
,
2015
, “
Analysis of Circumferential Welds in BWRs for Life Beyond 60
,”
ASME
Paper No. PVP2015-45836. 10.1115/PVP2015-45836
10.
Gamble
,
R.
,
Server
,
W.
,
Bishop
,
B.
,
Palm
,
N.
, and
Heinecke
,
C.
,
2009
, “
A Risk-Informed Methodology for ASME Section XI, Appendix G
,”
ASME
Paper No. PVP2009-77778. 10.1115/PVP2009-77778
11.
Dickson
,
T. L.
,
Focht
,
E.
, and
Kirk
,
M.
,
2010
, “
Review of Proposed Methodology for a Risk-Informed Relaxation to ASME Section XI—Appendix G
,”
ASME
Paper No. PVP2010-25010. 10.1115/PVP2010-25010
12.
Federal Agency for Nuclear Control
,
2013
, “
Doel 3 and Tihange 2 Reactor Pressure Vessel Final Evaluation Report
,” ANC, Brussels, Belgium.
13.
Electric Power Research Institute
,
2013
, “
Materials Reliability Program: Evaluation of the Reactor Vessel Beltline Shell Forgings of Operating US. PWRs for Quasi-Laminar Indications (MRP-367)
,” EPRI, Palo Alto, CA.https://www.nrc.gov/docs/ML1406/ML14064A411.pdf
14.
Gamble
,
R.
, and
Hardin
,
T.
,
2018
, “
Evaluation of Risk From Carbon Macro-Segregation in Large Pressure Retaining Forged Nuclear Components
,”
ASME
Paper No. PVP2018-84620. 10.1115/PVP2018-84620
15.
Shibata
,
K.
,
Onizawa
,
K.
,
Li
,
Y.
, and
Kato
,
D.
,
2001
, “
Development of Probabilistic Fracture Mechanics Code PASCAL and User's Manual
,” Japan Atomic Energy Research Institute, Tokai, Ibaraki, Japan, Report No.
JAERI-Data/Code 2001-011
(in Japanese).
16.
Li
,
Y.
,
Katsumata
,
G.
,
Masaki
,
K.
,
Hayashi
,
S.
,
Itabashi
,
Y.
,
Nagai
,
M.
,
Suzuki
,
M.
, and
Kanto
,
Y.
,
2017
, “
Verification of Probabilistic Fracture Mechanics Analysis Code PASCAL
,”
ASME
Paper No. ICONE25-66468. 10.1115/ICONE25-66468
17.
Li
,
Y.
,
Uno
,
S.
,
Katsuyama
,
J.
,
Dickson
,
T. L.
, and
Kirk
,
M.
,
2017
, “
Verification of Probabilistic Fracture Mechanics Analysis Code PASCAL Through Benchmark Analyses With FAVOR
,”
ASME
Paper No. PVP2017-66004. 10.1115/PVP2017-66004
18.
Li
,
Y.
,
Uno
,
S.
,
Masaki
,
K.
,
Katsuyama
,
J.
,
Dickson
,
T. L.
, and
Kirk
,
M.
,
2018
, “
Verification of Probabilistic Fracture Mechanics Analysis Code PASCAL Through Benchmark Analyses
,”
ASME
Paper No. PVP2018-84963. 10.11115/PVP2018-84963
19.
Lu
,
K.
,
Katsuyama
,
J.
,
Li
,
Y.
,
Miyamoto
,
Y.
,
Hirota
,
T.
,
Itabashi
,
Y.
,
Nagai
,
M.
,
Suzuki
,
M.
, and
Kanto
,
Y.
,
2020
, “
Recent Verification Activities on Probabilistic Fracture Mechanics Analysis Code PASCAL4 for Reactor Pressure Vessels
,”
Mech. Eng. J.
,
7
(
3
), p. 19-00573. 10.1299/mej.19-00573
20.
Katsuyama
,
J.
,
Osakabe
,
K.
,
Uno
,
S.
,
Li
,
Y.
, and
Yoshimura
,
S.
,
2017
, “
Guideline on Probabilistic Fracture Mechanics Analysis for Japanese Reactor Pressure Vessels
,”
ASME
Paper No. PVP2017-65921. 10.1115/PVP2017-65921
21.
Katsuyama
,
J.
,
Osakabe
,
K.
,
Uno
,
S.
, and
Li
,
Y.
,
2017
, “
Guideline on a Structural Integrity Assessment for Reactor Pressure Vessel Based on Probabilistic Fracture Mechanics
,” Japan Atomic Energy Agency, Tokai, Ibaraki, Japan, Report No. JAEA-Research 2016-022 (in Japanese).
22.
Lu
,
K.
,
Katsuyama
,
J.
,
Li
,
Y.
,
Uno
,
S.
, and
Masaki
,
K.
,
2020
, “
Improvements on Evaluation Functions of a Probabilistic Fracture Mechanics Analysis Code for Reactor Pressure Vessels
,”
ASME J. Pressure Vessel Technol.
,
142
(
2
), p.
021302
.10.1115/1.4045512
23.
Lu
,
K.
,
Masaki
,
K.
,
Katsuyama
,
J.
,
Li
,
Y.
, and
Uno
,
S.
,
2018
, “
Development of Probabilistic Fracture Mechanics Analysis Code PASCAL Version 4 for Reactor Pressure Vessels
,”
ASME
Paper No. PVP2018-84964. 10.1115/PVP2018-84964
24.
Simonen
,
F. A.
,
Doctor
,
S. R.
,
Schuster
,
G. J.
, and
Heasler
,
P. G.
,
2003
, “
A Generalized Procedure for Generating Flaw-Related Inputs for the FAVOR Code
,” U.S. Nuclear Regulatory Commission, Rockville, MD, Report No.
NUREG/CR-6817
.https://www.nrc.gov/docs/ML0408/ML040830499.pdf
25.
Stevens
,
G.
,
Kirk
,
M.
, and
Modarres
,
M.
,
2018
, “
Technical Basis for Regulatory Guidance on the Alternate Pressurized Thermal Shock Rule
,” U.S. Nuclear Regulatory Commission, Rockville, MD, Report No.
NUREG-2163
.https://www.nrc.gov/docs/ML1505/ML15058A677.pdf
26.
Lu
,
K.
,
Miyamoto
,
Y.
,
Mano
,
A.
,
Katsuyama
,
J.
, and
Li
,
Y.
,
2017
, “
An Estimation Method of Flaw Distributions Reflecting Inspection Results Through Bayesian Update
,”
Proceedings of Asian Symposium on Risk Assessments and Management
, Yohohama, Japan, Nov. 13–15, Paper No.
ASRAM2017-1025
.https://inis.iaea.org/search/search.aspx?orig_q=RN:50023701
27.
Khaleel
,
M. A.
, and
Simonen
,
F. A.
,
2000
, “
A Model for Predicting Vessel Failure Probabilities Including the Effects of Service Inspection and Flaw Sizing Errors
,”
Nucl. Eng. Des.
,
200
(
3
), pp.
353
369
.10.1016/S0029-5493(00)00244-2
28.
Japan Nuclear Energy Safety Organization
,
2005
, “
Report on the Validation Project of Inspection Technologies for Nuclear Power Facilities (Confirmation of Crack Detectability and Sizing Accuracy in Ultrasonic Testing)
,” Japan Nuclear Energy Safety Organization, Tokyo, Japan, Report No. 05-0001(2/2) (in Japanese).
29.
Erickson Kirk
,
M.
, Junge, M., Arcieri, W., Bass, B. R., Beaton, R., Bessette, D., Chang, T. H., Dickson, T., Fletcher, C. D., Kolaczkowski, A., Malik, S., Mintz, T., Pugh, C., Simonen, F., Siu, N., Whitehead, D., Williams, P., Woods, R., and Yin, S.,
2007
, “
Technical Basis for Revision of the Pressurized Thermal Shock (PTS) Screening Limit in the PTS Rule (10 CFR 50.61)
,” U.S. Nuclear Regulatory Commission, Rockville, MD, Report No.
NUREG-1806
.https://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1806/v1/index.html
30.
Chou
,
H. W.
, and
Huang
,
C. C.
,
2014
, “
Structural Reliability Evaluation on the Pressurized Water Reactor Pressure Vessel Under Pressurized Thermal Shock Events
,”
ASME
Paper No. PVP2014-28350. 10.1115/PVP2014-28350
31.
Hirota
,
T.
,
Sakamoto
,
H.
, and
Ogawa
,
N.
,
2014
, “
Proposal for Update on Evaluation Procedure for Reactor Pressure Vessels Against Pressurized Thermal Shock Events in Japan
,”
ASME
Paper No. PVP2014-28392.10.1115/PVP2014-28392
32.
Katsuyama
,
J.
,
Nishikawa
,
H.
,
Udagawa
,
M.
,
Nakamura
,
M.
, and
Onizawa
,
K.
,
2013
, “
Assessment of Residual Stress Due to Overlay-Welded Cladding and Structural Integrity of a Reactor Pressure Vessel
,”
ASME J. Pressure Vessel Technol.
,
135
(
5
), p.
051402
.10.1115/1.4024617
33.
Japan Electric Association
,
2013
, “
Method of Surveillance Tests for Structural Materials of Nuclear Reactors
,” Japan Electric Association, Tokyo, Japan, Report No. JEAC4201-2007 (supplemented in 2013) (in Japanese).
34.
Japan Society of Mechanical Engineers
,
2016
, “
Codes for Nuclear Power Generation Facilities- Rules on Fitness-for-Service for Nuclear Power Plants
,” JSME, Tokyo, Japan, Standard No. JSME S NA1-2016.
35.
Lu
,
K.
,
Mano
,
A.
,
Katsuyama
,
J.
,
Li
,
Y.
, and
Iwamatsu
,
F.
,
2018
, “
Development of Stress Intensity Factors for Subsurface Flaws in Plates Subjected to Polynomial Stress Distributions
,”
ASME J. Pressure Vessel Technol.
,
140
(
3
), p.
031201
.10.1115/1.4039125
36.
Marie
,
S.
, and
Chapuliot
,
S.
,
2008
, “
Improvement of the Calculation of the Stress Intensity Factors for Underclad and Through-Clad Defects in a Reactor Pressure Vessel Subjected to a Pressurized Thermal Shock
,”
Int. J. Pressure Vessels Piping
,
85
(
8
), pp.
517
531
.10.1016/j.ijpvp.2008.02.006
37.
American Society of Mechanical Engineers
,
2015
, “
ASME B&PV Code Section XI, Rules for in-Service Inspection of Nuclear Power Plant Components
,” ASME, New York, Standard No. ASME BPVC XI 2015.
38.
Lu
,
K.
,
Katsuyama
,
J.
,
Uno
,
S.
, and
Li
,
Y.
,
2017
, “
Probabilistic Fracture Mechanics Analysis Models for Japanese Reactor Pressure Vessels
,”
ASME
Paper No. PVP2017-66003. 10.1115/PVP2017-66003
39.
Chapuliot
,
S.
,
Izard
,
J.
,
Moinereau
,
D.
, and
Marie
,
S.
,
2010
, “
WPS Criterion Proposition Based on Experimental Data Base Interpretation
,” FONTEVRAUD 7, Avignon, France, Sept. 26–30, Paper No.
A141
.https://inis.iaea.org/search/search.aspx?orig_q=RN:42088723
40.
Torronen
,
K.
,
Pelli
,
R.
,
Planman
,
T.
, and
Valo
,
M.
,
1993
, “
Irradiation Embrittlement Mitigation
,” Technical Research Centre of Finland, Espoo, Finland, Report No.
NEA-CSNI-R-94-1
.
You do not currently have access to this content.