Abstract

Avoidance of flow-induced resonance is crucial in managing the failure risk of industrial temperature measurements. To this end, we find that modal analysis of thermowell installations using traditional shell and beam theory, may offer a useful screening tool for at risk installations. This is demonstrated in part by a comparison of predicted resonances of flange-mounted thermowells with those described in reported flow tests.

References

1.
George
,
D. L.
, and
Grimley
,
T. A.
,
2017
, “
Final Test Report: Tests of Orbital/Daily VE Helical Strake Thermowells
,” Southwest Research Institute® Project 18031.17.021, Orbital Gas Systems, Houston, TX, Report No.
77080
.www.dailyinst.com/assets/14.-dailythermowelltestreport.pdf
2.
Brock
,
J. E.
,
1974
, “
Stress Analysis of Thermowells
,” Report NPS—59B074112A, Naval Postgraduate School Report,” Naval Postgraduate School, Monterey, CA, Report No. AD/A-001 617.
3.
Leissa
,
A. W.
,
1973
, “
Vibration of Shells
,” U.S. Govt Printing Office, Washington DC, Report No. NASA SP-288.
4.
Dai
,
L.
,
Yang
,
T.
,
Li
,
W. L.
,
Du
,
J.
, and
Jin
,
G.
,
2012
, “
Dynamic Analysis of Circular Cylindrical Shells With General Boundary Conditions Using Modified Fourier Series Method
,”
ASME J. Vib. Acoust.
,
134
(
4
), p.
041004
.10.1115/1.4005833
5.
Lee
,
G. Y. H.
,
Chan
,
K. B.
,
Lee
,
A. Y. S.
, and
Jia
,
S.
,
2017
, “
High Energy Vibration for Gas Piping
,”
IOP Conf. Ser., Mater. Sci. Eng.
,
217
, p.
012010
.10.1088/1757-899X/217/1/012010
6.
Zhou
,
Z. J.
, and
Motiuk
,
R. W.
,
1996
, “
Influence of Tapered Thermowell Length on Temperature Measurement
,”
Conference on Integrity of Structures and Fluid Systems, Hazardous Release Protection, Piping and Pipe Supports, and Pumps and Valves, Vol.
333, Nova Gas Trans., Calgary, AB, Canada, pp.
97
104
.
7.
Eckert
,
B.
,
2010
, “
Centrifugal Compressor Case Study
,”
Gas Machinery Conference
(GMC 2010), Gas Machinery Conference, Oct 4–6, Phoenix, AZ.
8.
Weaver
,
W.
,
Timoshenko
,
S. P.
, and
Young
,
D. H.
,
1990
,
Vibration Problems in Engineering
, 5th ed.,
Wiley
,
New York
.
9.
Hutchinson
,
J. R.
,
2001
, “
Shear Coefficients for Timoshenko Beam Theory
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
87
92
.10.1115/1.1349417
10.
Bartran
,
D.
,
2015
, “
Support Flexibility and Natural Frequencies of Pipe Mounted Thermowells
,”
ASME J. Pressure Vessel Technol.
,
137
, pp.
1
6
.10.1115/1.4028863
11.
Bijlaard
,
P. P.
,
1955
, “Stresses Form Local Loading in Cylindrical PressureVessels,” ASME Trans., 77(54-PET-7), pp.
805
814
.
12.
Bartran
,
D.
,
2018
, “
The Drag Crisis and Thermowell Design
,”
ASME J. Pressure Vessel Technol.
,
40
(
4
), p.
044501
.10.1115/1.4039882
13.
Achenbach
,
E.
, and
Heinecke
,
E.
,
1981
, “
On Vortex Shedding From Smooth and Rough Cylinders in the Range of Reynolds Numbers 6×103 to 5×106
,”
J. Fluid Mech.
,
109
, pp.
239
251
. 10.1017/S002211208100102X
14.
Kawamura
,
T.
,
Nakao
,
T.
,
Takahashi
,
M.
,
Hayashi
,
T.
,
Murayama
,
K.
, and
Gotoh
,
N.
,
2003
, “
Synchronized Vibrations of a Circular Cylinder in Cross Flow at Supercritical Reynolds Numbers
,”
ASME J. Pressure Vessel Technol.
,
125
(
1
), pp.
97
108
. 10.1115/1.1526855
15.
Zdravkovich
,
M. M.
,
1981
, “
Review and Classification of Various Aerodynamic and Hydrodynamic Means for Suppressing Vortex Shedding
,”
J. Wind Eng. Ind. Aerodyn.
,
7
(
2
), pp.
145
189
. 10.1016/0167-6105(81)90036-2
16.
Blevins
,
R. D.
,
Tilden
,
B. W.
, and
Martens
,
D. H.
,
1996
, “
Vortex-Induced Vibration and Damping of Thermowells
,” Flow Induced Vibration, American Society of Mechanical Engineers, New York, pp.
465
485
.
17.
Bartran
,
D. S.
,
2015
, “
Natural Frequencies of Plate Supported Thermowells
,”
ASME J. Pressure Vessel Technol.
,
137
(
2
), p.
024502
. 10.1115/1.4028703
18.
Porter
,
M. A.
, and
Martens
,
D. H.
,
2002
, “
Thermowell Vibration Investigation and Analysis
,”
ASME
Paper No. PVP 2002-1500.
You do not currently have access to this content.