In service pipelines exhibit bending loads in a variety of in-field situation. These bending loads can induce large longitudinal strains, which may trigger local buckling on the pipe's compressive side and/or lead to rupture of the pipe's tensile side. In this article, the post-buckling failure modes of pressurized X65 steel pipelines under monotonic bending loading conditions are studied via both experimental and numerical investigations. Through the performed full-scale bending test, it is shown that the post-buckling rupture is only plausible to occur in the pipe wall on the tensile side of the wrinkled cross section under the increased bending. Based on the experimental results, a finite element (FE)-based numerical model with a calibrated cumulative fracture criterion was proposed to conduct a parametric analysis on the effects of the internal pressure on the pipe's failure modes. The results show that the internal pressure is the most crucial variable that controls the ultimate failure mode of a wrinkled pipeline under monotonic bending load. And the post-buckling rupture of the tensile wall can only be reached in highly pressurized pipes (hoop stress no less than 70% SMYS for the investigated X65 pipe). That is, no postwrinkling rupture is likely to happen below a certain critical internal pressure even after an abrupt distortion of the wrinkled wall on the compressive side of the cross section.

References

1.
Witek
,
M.
,
2015
, “
Possibilities of Using X80, X100, X120 High-Strength Steels for Onshore Gas Transmission Pipelines
,”
J. Nat. Gas Sci. Eng.
,
27
, pp.
374
384
.
2.
Kaya
,
E. S.
,
Uckan
,
E.
,
O'Rourke
,
M. J.
,
Karamanos
,
S. A.
,
Akbas
,
B.
,
Cakir
,
F.
, and
Cheng
,
Y.
,
2016
, “
Failure Analysis of a Welded Steel Pipe at Kullar Fault Crossing
,”
Eng. Failure Anal.
,
71
, pp.
43
62
.
3.
Gresnigt
,
A. M.
,
1987
, “
Plastic Design of Buried Steel Pipelines in Settlement Areas
,” STEVIN-Laboratory of the Department of Civil Engineering, Delft University of Technology, Delft, The Netherlands.
4.
Dorey
,
A. B.
,
Murray
,
D. W.
, and
Cheng
,
J. J. R.
,
2006
, “
Critical Buckling Strain Equations for Energy Pipelines—A Parametric Study
,”
ASME J. Offshore Mech. Arct. Eng.
,
128
(
3
), pp.
248
255
.
5.
Neuane
,
S.
,
Adeeb
,
S.
,
Cheng
,
R.
,
Ferguson
,
J.
, and
Martens
,
M.
,
2012
, “
Modeling the Deformation Response of High Strength Steel Pipelines—Part II: Effects of Material Characterization on the Deformation Response of Pipes
,”
ASME J. Appl. Mech.
,
79
(
5
), p.
051003
.
6.
Vazouras
,
P.
,
Karamanos
,
S. A.
, and
Dakoulas
,
P.
,
2010
, “
Finite Element Analysis of Buried Steel Pipelines Under Strike-Slip Fault Displacements
,”
Soil Dyn. Earthquake Eng.
,
30
(
11
), pp.
1361
1376
.
7.
Vazouras
,
P.
,
Karamanos
,
S. A.
, and
Dakoulas
,
P.
,
2012
, “
Mechanical Behavior of Buried Steel Pipes Crossing Active Strike-Slip Faults
,”
Soil Dyn. Earthquake Eng.
,
41
, pp.
164
180
.
8.
Trifonov
,
O. V.
,
2015
, “
Numerical Stress-Strain Analysis of Buried Steel Pipelines Crossing Active Strike-Slip Faults With an Emphasis on Fault Modeling Aspects
,”
J. Pipeline Syst. Eng. Pract.
,
6
(
1
), p.
04014008
.
9.
Hojat Jalali
,
H.
,
Rofooei
,
F. R.
, and
Attari
,
N. K. A.
,
2018
, “
Performance of Buried Gas Distribution Pipelines Subjected to Reverse Fault Movement
,”
J. Earthquake Eng.
,
22
(6), pp. 1068–1091
10.
Hojat Jalali
,
H.
,
Rofooei
,
F. R.
,
Attari
,
N. K. A.
, and
Samadian
,
M.
,
2016
, “
Experimental and Finite Element Study of the Reverse Faulting Effects on Buried Continuous Steel Gas Pipelines
,”
Soil Dyn. Earthquake Eng.
,
86
, pp.
1
14
.
11.
Liu
,
X. B.
,
Zhang
,
H.
,
Li
,
M.
,
Xia
,
M. Y.
,
Zheng
,
W.
,
Wu
,
K.
, and
Han
,
Y. S.
,
2016
, “
Effects of Steel Properties on the Local Buckling Response of High Strength Pipelines Subjected to Reverse Faulting
,”
J. Nat. Gas Sci. Eng.
,
33
, pp.
378
387
.
12.
Liu
,
X. B.
,
Zhang
,
H.
,
Han
,
Y. S.
,
Xia
,
M. Y.
, and
Zheng
,
W.
,
2016
, “
A Semi-Empirical Model for Peak Strain Prediction of Buried X80 Steel Pipelines Under Compression and Bending at Strike-Slip Fault Crossings
,”
J. Nat. Gas Sci. Eng.
,
32
, pp.
465
475
.
13.
Liu
,
X. B.
,
Zhang
,
H.
,
Wu
,
K.
,
Xia
,
M. Y.
,
Chen
,
Y. F.
, and
Li
,
M.
,
2017
, “
Buckling Failure Mode Analysis of Buried X80 Steel Gas Pipeline Under Reverse Fault Displacement
,”
Eng. Fail. Anal.
,
77
, pp.
50
64
.
14.
Liu
,
X. B.
,
Zhang
,
H.
,
Wang
,
B. D.
,
Xia
,
M. Y.
,
Wu
,
K.
,
Zheng
,
Q.
, and
Han
,
Y. S.
,
2018
, “
Local Buckling Behavior and Plastic Deformation Capacity of High-Strength Pipe at Strike-Slip Fault Crossing
,”
Metals
,
8
(
1
), p.
22
.
15.
Mohajer Rahbari
,
N.
,
Cheng
,
R.
, and
Adeeb
,
S.
,
2017
, “
On the Critical Boundary Conditions for Rupture of Buckled Steel Pipelines
,”
ASME
Paper No. PVP2017-65763.
16.
Mohajer Rahbari
,
N.
,
Cheng
,
R.
, and
Adeeb
,
S.
,
2017
, “
Coupled Effect of Y/T Ratio and Internal Pressure on the Ductile Fracture of Buckled Pipes
,” The 27th International Ocean and Polar Engineering Conference, San Francisco, CA, June 25--30, Paper No.
ISOPE-I-17-268
.https://www.onepetro.org/conference-paper/ISOPE-I-17-268
17.
Mohajer Rahbari
,
N.
,
2017
, “
Rupture of Wrinkled Steel Pipelines Under Monotonic Bending
,” Ph.D. thesis, University of Alberta, Edmonton, AB, Canada.
18.
Zhang
,
B. J.
,
Ye
,
C.
,
Liang
,
B.
,
Zhang
,
Z. Z.
, and
Zhi
,
Y. R.
,
2014
, “
Ductile Failure Analysis and Crack Behavior of X65 Buried Pipes Using Extended Finite Element Method
,”
Eng. Failure Anal.
,
45
, pp.
26
40
.
19.
Do
,
N. T.
,
Cakiroglu
,
C.
,
Gul
,
M.
,
Cheng
,
R.
,
Sen
,
M.
, and
Adeeb
,
S.
,
2017
, “
Variations in the Postbuckling Behavior of Straight Pipes Due to Steel Grade and Internal Pressure
,”
ASME J. Pressure Vessel Technol.
,
139
(
1
), p.
014501
.
20.
Liu
,
X. B.
,
Zhang
,
H.
,
Han
,
Y. S.
,
Xia
,
M. Y.
, and
Ji
,
Y. F.
,
2017
, “
Numerical and Experimental Study on Critical Crack Tip Opening Dis-Placement of X80 Pipeline Steel
,”
Mechanika
,
23
(
2
), pp.
204
208
.
21.
ASTM
,
2003
, “
Standard Test Methods of Tension Testing of Metallic Materials
,” ASTM International, West Conshohocken, PA, Standard No. ASTM E8/E8M-13.
22.
Cheng
,
R.
,
Sen
,
M.
,
Behbahanifard
,
M.
, and
Murray
,
D. W.
,
2004
, “
Local Buckling Behavior and Design of Cold Bend Pipes
,” University of Alberta, Edmonton, AB, Canada, Report No. 2004-1.
23.
Sen
,
M.
,
2006
, “
Behaviour of Cold Bend Pipes Under Combined Loads
,” Ph.D. thesis, University of Alberta, Edmonton, AB, Canada.
24.
Bai
,
Y.
,
2007
, “
Effect of Loading History on Necking and Fracture
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
25.
Bao
,
Y.
,
2003
, “
Prediction of Ductile Track Formation in Uncracked Bodies
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
26.
Bao
,
Y.
, and
Wierzbicki
,
T.
,
2004
, “
A Comparative Study on Various Ductile Crack Formation Criteria
,”
J. Eng. Mater. Technol.
,
126
(
3
), pp.
314
324
.
27.
Kofiani
,
K.
,
Wierzbicki
,
T.
,
Nonn
,
A.
,
Kalwa
,
C.
, and
Walters
,
C.
,
2012
, “
Experiments and Fracture Modeling of High-Strength Pipelines for High and Low Stress Triaxialities
,” The 22nd International Offshore and Polar Engineering Conference, Rhodes, Greece, June 17–22, Paper No.
ISOPE-I-12-653
.https://www.onepetro.org/conference-paper/ISOPE-I-12-653
28.
Kofiani
,
K.
,
Nonn
,
A.
, and
Wierzbicki
,
T.
,
2013
, “
New Calibration Method for High and Low Triaxiality and Validation on SENT Specimens of API X70
,”
Int. J. Pressure Vessels Piping
,
111–112
, pp.
187
201
.
29.
Ahmed
,
A. U.
,
2011
, “
Failure Criteria for Tearing of Telescoping Wrinkles
,” Ph.D. thesis, University of Alberta, Edmonton, AB, Canada.
30.
Mohajer Rahbari
,
N.
,
Cheng
,
J.
, and
Sen
,
M.
,
2015
, “
Tensile Fracture of Wrinkled Cold Bend Pipe Under Monotonic Loading Condition
,” The 25th International Offshore and Polar Engineering Conference, Kona, HI, June 21–26, Paper No.
ISOPE-I-15-844
https://www.onepetro.org/conference-paper/ISOPE-I-15-844.
31.
Bai
,
Y. L.
, and
Wierzbicki
,
T.
,
2010
, “
Application of Extended Mohr–Coulomb Criterion to Ductile Fracture
,”
Int. J. Fract.
,
161
(
1
), pp.
1
20
.
32.
Mohareb
,
M. E.
,
1995
, “
Deformational Behaviour of Line Pipe
,” Ph.D. thesis, University of Alberta, Edmonton, AB, Canada.
33.
Mohareb
,
M. E.
,
Kulak
,
G.
,
Elwi
,
A.
, and
Murray
,
D.
,
2001
, “
Testing and Analysis of Steel Pipe Segments
,”
J. Transp. Eng.
,
127
(
5
), pp.
408
417
.
34.
Chiou
,
Y.
, and
Murray
,
D.
,
1993
, “
Towards Rational Deformation Limit States for Buried Pipelines
,” The Third International Offshore and Polar Engineering Conference, Singapore, June 6–11, Paper No.
ISOPE-I-93-103
https://www.onepetro.org/conference-paper/ISOPE-I-93-103.
35.
Jiao
,
Z.
, and
Shuai
,
J.
,
2014
, “
A Cyclic Internal Pressure Characteristics Analysis of Long Distance Transmission Pipelines
,”
Pet. Sci. Technol.
,
32
(
1
), pp.
61
67
.
36.
Skarakis
,
I.
,
Chatzopoulou
,
G.
,
Karamanos
,
S. A.
,
Tsouvalis
,
N. G.
, and
Pournara
,
A. E.
,
2017
, “
CFRP Reinforcement and Repair of Steel Pipe Elbows Subjected to Severe Cyclic Loading
,”
ASME J. Pressure Vessel Technol.
,
139
(
5
), p.
051403
.
You do not currently have access to this content.