Risk-based inspection (RBI) has been applied to good effect in relation to pieces of equipment and pipelines in the petrochemical industry worldwide, but to the best of our knowledge application of RBI to power station boilers has not hitherto been reported. The tubes of the four key components, namely, the economizer, the water-cooling wall, the superheater, and the reheater, are prone to blast due to direct fire heating. Such a blast always causes unplanned shutdown and has severe safety implications. Based on the “API 581-2000” code (Risk-Based Inspection Base Resource), the failure mechanisms of power station boilers have been studied, and the high-temperature smoke erosion factor and high-temperature creep factor have been calculated. Then, considering specific situations in China, such as material quality and extended service, a failure modification factor based on remaining life has been proposed. Finally, two risk assessment projects have been carried out; after delineating the risk levels of the tubes, appropriate management suggestions have been proposed. The obtained data should provide some technical support for the application of RBI to power station boilers.

1.
Fairbairn
,
W.
, 1853, “
On Boilers and Boiler Explosions
,”
J. Franklin Inst.
0016-0032,
56
(
2
), pp.
73
79
.
2.
Tseng
,
J. M.
,
Kuo
,
C. Y.
,
Liu
,
M. Y.
, and
Shu
,
C. M.
, 2008, “
Emergency Response Plan for Boiler Explosion With Toxic Chemical Releases at Nan-Kung Industrial Park in Central Taiwan
,”
Process Saf. Environ. Prot.
0957-5820,
86
(
6
), pp.
415
420
.
3.
Arago
,
M.
, 1830, “
On the Explosions of Boilers of Steam Engines
,”
J. Franklin Inst.
0016-0032,
9
(
6
), pp.
399
414
.
4.
Meng
,
X. Z.
, and
Han
,
J. H.
, 2007,
Case Analysis and Prevention of Pressure Vessel Accidents of Power Station Boiler
, Chinese edition,
China Water Conservancy and Hydropower
,
Beijing, China
.
5.
Reynolds
,
J. T.
, 1996, “
The Application of Risk Based Inspection Methodology in the Petroleum and Petrochemical Industry
,”
ASME
, PVP-Vol.
336
, pp.
125
134
.
6.
Lee
,
S. M.
,
Chang
,
Y. S.
,
Choi
,
J. B.
, and
Kim
,
Y. J.
, 2006, “
Application of an Enhanced RBI Method for Petrochemical Equipments
,”
ASME J. Pressure Vessel Technol.
0094-9930,
128
(
3
), pp.
445
453
.
7.
Nilsson
,
F.
, 2003, “
Risk-Based Approach to Plant Life Management
,”
Nucl. Eng. Des.
0029-5493,
221
(
1–3
), pp.
293
300
.
8.
American Petroleum Institute
, 2000, Risk Based Inspection Base Resource Document, API 581, 1st ed.
9.
American Petroleum Institute
, 2002, Risk Based Inspection, API 580, 1st ed.
10.
You
,
J. -S.
, and
Wu
,
W. -F.
, 2002, “
Probabilistic Failure Analysis of Nuclear Piping With Empirical Study of Taiwan’s BWR Plants
,”
Int. J. Pressure Vessels Piping
0308-0161,
79
(
7
), pp.
483
492
.
11.
Schroder
,
H. C.
, and
Kauer
,
R.
, 2004, “
Regulatory Requirements Related to Risk-Based Inspection and Maintenance
,”
Int. J. Pressure Vessels Piping
0308-0161,
81
, pp.
847
854
.
12.
Kihara
,
S.
,
Sakai
,
J.
, and
Sakai
,
S.
, 2005, “
Development of Risk Assessment Tools for RBM (Risk Based Maintenance)
,”
Proceedings of JSCE Materials and Environments
, pp.
45
48
.
13.
Moosemiller
,
M.
, 2006, “
Avoiding Pitfalls in Assembling an Equipment Failure Rate Database for Risk Assessments
,”
J. Hazard. Mater.
0304-3894,
130
(
1–2
), pp.
128
132
.
14.
Noori
,
S. A.
, and
Price
,
J. W. H.
, 2006, “
A Risk Approach to the Management of Boiler Tube Thinning
,”
Nucl. Eng. Des.
0029-5493,
236
(
4
), pp.
405
414
.
15.
Shao
,
S. W.
, 2009, “
The Application of RBI Technology in Power Station System
,” Ma.D. thesis, Lanzhou University of Technology, Lanzhou.
16.
Tucakovic
,
D. R.
,
Stevanovic
,
V. D.
,
Zivanovic
,
T.
,
Jovovic
,
A.
, and
Ivanovic
,
V. B.
, 2007, “
Thermal-Hydraulic Analysis of a Steam Boiler With Rifled Evaporating Tubes
,”
Appl. Therm. Eng.
1359-4311,
27
(
2–3
), pp.
509
519
.
17.
Paget
,
F. A.
, and
Esq
,
C. E.
, 1865, “
On the Wear and Tear of Steam Boilers
,”
J. Franklin Inst.
0016-0032,
80
(
1
), pp.
13
20
.
18.
Design Department of Beijing Boiler Works
, 1973,
Thermal Calculation of Boiler Units—Standard Method
, Chinese edition,
China Machine Press
,
Beijing
.
19.
Viswanathan
,
R.
,
Paterson
,
S. R.
,
Grunloh
,
H.
, and
Gehl
,
S.
, 1994, “
Life Assessment of Superheater/Reheater Tubes in Fossil Boilers
,”
ASME J. Pressure Vessel Technol.
0094-9930,
116
(
1
), pp.
1
16
.
20.
Ray
,
A. K.
,
Tiwari
,
Y. N.
,
Sinha
,
R. K.
,
Chaudhuri
,
S.
, and
Singh
,
R.
, 2000, “
Residual Life Prediction of Service Exposed Main Steam Pipe of Boilers in a Thermal Power Plant
,”
Eng. Failure Anal.
1350-6307,
7
(
5
), pp.
359
376
.
21.
Khan
,
F. I.
,
Sadiq
,
R.
, and
Haddara
,
M. M.
, 2004, “
Risk-Based Inspection and Maintenance (RBIM): Multi-Attribute Decision-Making With Aggregative Risk Analysis
,”
Process Saf. Environ. Prot.
0957-5820,
82
(
6
), pp.
398
411
.
22.
Giribone
,
R.
, and
Valette
,
B.
, 2004, “
Principles of Failure Probability Assessment (PoF)
,”
Int. J. Pressure Vessels Piping
0308-0161,
81
(
10–11
), pp.
797
806
.
23.
Kunstmann
,
H.
,
Kinzelbach
,
W.
, and
Siegfried
,
T.
, 2002, “
Conditional First-Order Second-Moment Method and Its Application to the Quantification of Uncertainty in Groundwater Modeling
,”
Water Resour. Res.
0043-1397,
38
(
4
), pp.
1035
1048
.
24.
Det Norske Veritas
, 2009, Orbit Onshore Help Document, V2.4.30.
25.
Mbabazi
,
J. G.
,
Sheer
,
T. J.
, and
Shandu
,
R.
, 2004, “
A Model to Predict Erosion on Mild Steel Surfaces Impacted by Boiler Fly Ash Particles
,”
Wear
0043-1648,
257
(
5–6
), pp.
612
624
.
26.
Streibel
,
T.
,
Nordsieck
,
H.
,
Neuer-Etscheidt
,
K.
,
Schnelle-Kreis
,
J.
, and
Zimmermann
,
R.
, 2007, “
Experimental and Statistical Determination of Indicator Parameters for the Evaluation of Fly Ash and Boiler Ash PCDD/PCDF Concentration From Municipal Solid Waste Incinerators
,”
Chemosphere
0045-6535,
67
(
9
), pp.
S155
S163
.
27.
American Petroleum Institute
, 2003, Calculation of Heater Tube Thickness in Petroleum Refineries, API 530, 1st ed.
28.
Vasudevan
,
M.
,
Venkadesan
,
S.
,
Sivaprasad
,
P. V.
, and
Mannan
,
S. L.
, 1994, “
Use of the Larson-Miller Parameter to Study the Influence of Ageing on the Hardness of Cold-Worked Austenitic Stainless Steel
,”
J. Nucl. Mater.
0022-3115,
211
(
3
), pp.
251
255
.
29.
Yang
,
R. C.
,
Chen
,
K.
,
Feng
,
H. X.
, and
Wang
,
H.
, 2004, “
Determination and Application of Larson-Miller Parameter for Heat Resistant Steel 12CrlMoV and 15CrMo
,”
Acta Metall. Sin. (Engl. Lett.)
1006-7191,
4
, pp.
471
476
.
30.
Chandler
,
H. D.
, and
Kwofie
,
S.
, 2005, “
A Description of Cyclic Creep Under Conditions of Axial Cyclic and Mean Stresses
,”
Int. J. Fatigue
0142-1123,
27
(
5
), pp.
541
545
.
31.
Santosh
,
A.
,
Vinod
,
G.
,
Shrivastava
,
O. P.
,
Saraf
,
R. K.
,
Ghosh
,
A. K.
, and
Kushwaha
,
H. S.
, 2006, “
Reliability Analysis of Pipelines Carrying H2S for Risk Based Inspection of Heavy Water Plants
,”
Reliab. Eng. Syst. Saf.
0951-8320,
91
(
2
), pp.
163
170
.
32.
Stirling
,
A.
, 1999, “
Risk at a Turning Point?
,”
Journal of Environmental Medicine
,
1
, pp.
119
126
.
33.
APTECH Engineering Services, Inc.
, 2010, Fitness for Service, http://www.aptechtexas.com/page32.htmlhttp://www.aptechtexas.com/page32.html
34.
Glatzel
,
T.
,
Litterst
,
C.
,
Cupelli
,
C.
,
Lindemann
,
T.
,
Moosmann
,
C.
,
Niekrawietz
,
R.
,
Streule
,
W.
,
Zengerle
,
R.
, and
Koltay
,
P.
, 2008, “
Computational Fluid Dynamics (CFD) Software Tools for Microfluidic Applications—A Case Study
,”
Comput. Fluids
0045-7930,
37
(
3
), pp.
218
235
.
You do not currently have access to this content.