Craze cracking and clad disbonding typically occur in cladding due to thermomechanical cycling and high property mismatch between dissimilar materials in a coke drum. The thermoelasticity problem in a coke drum with cladding is assumed quasi-static and solved analytically in this paper. The transient temperature distribution in both radial and axial directions is derived analytically based on the two-dimensional heat conduction theory. The iteration technique is applied to simulate the dynamic thermal boundary conditions caused by a fluid surface level rising continuously during both heated feed filling and water quench steps. Additionally, the classical laminated thin shell theory is applied to solve the quasi-static structural problem. The analytical results of the quasi-static thermoelasticity problem are compared with the finite element analysis. It is shown that during the water quench step, the maximum axial thermal gradient occurs at the inner surface of the clad, close to the water surface. The tension stresses occur in the clad due to its coefficient of thermal expansion smaller than that of the base metal material. Both the maximal axial stress and hoop stress occur at the cladding surface. These results may be helpful in explaining the formation mechanism of the clad disbonding and the shallow surface cracks at the inner surface of cladding.

1.
Bagdasarian
,
A.
,
Horwege
,
J.
,
Kirk
,
S.
, and
Munsterman
,
T.
, 2000, “
Integrity of Coke Drums (Summary of 1998 API Coke Drum Survey)
,”
Service Experience and Fitness-for-Service in Power and Petroleum Processing
,
ASME
,
New York
, Vol.
411
, pp.
265
270
.
2.
Capstone Engineering Service
, 1997, “
Coke Drum Survey for American Petroleum Institute
,” Houston, TX.
3.
Liu
,
R. H.
, and
Ning
,
Z. H.
, 2007, “Research Progress of Bulging and Cracking Mechanisms and Remaining Life Evaluation for Coke Drums,” Pressure Vessel Technology, 27(1), pp. 1–8, in Chinese.
4.
Penso
,
J. A.
,
Lattarulo
,
Y. M.
,
Seijas
,
A. J.
,
Torres
,
J.
,
Howden
,
D.
, and
Tsai
,
C. L.
, 1999, “
Understanding Failure Mechanisms to Improve Reliability of Coke Drums
,”
Operations, Applications, and Components
,
ASME
,
New York
, Vol.
395
, pp.
243
253
.
5.
Richard
,
S.
,
Boswell
,
P. E.
,
Ferraro
,
T.
, and
Sober
,
M. J.
, 1997, “
Remain Life Evaluation of Coke Drums
,”
Plant Engineering, Operations, Design and Reliability Symposium, Energy Engineering Conference
, Houston, TX.
6.
Penso
,
J. A.
, 2001, “
Fundamental Study of Failure Mechanisms of Pressure Vessels Under Thermo-Mechanical Cycling in Multiphase Environments
,” Ph.D. thesis, The Ohio State University, Columbus, OH.
7.
Wang
,
X.
, 1995, “
Thermal Shock in a Hollow Cylinder Caused by a Rapid Arbitrary Heating
,”
J. Sound Vib.
0022-460X,
183
(
5
), pp.
899
906
.
8.
Cho
,
H.
,
Kardomateas
,
G. A.
, and
Valle
,
C. S.
, 1998, “
Elastodynamic Solution for the Thermal Shock Stresses in an Orthotropic Thick Cylindrical Shell
,”
ASME J. Appl. Mech.
0021-8936,
65
(
1
), pp.
184
193
.
9.
Kandil
,
A.
,
El-Kady
,
A. A.
, and
El-Kafrawy
,
A.
, 1995, “
Transient Thermal Stress Analysis of Thick-Walled Cylinders
,”
Int. J. Mech. Sci.
0020-7403,
37
, pp.
721
732
.
10.
Chen
,
P. Y. P.
, 1983, “
Axisymmetric Thermal Stresses in an Anisotropic Finite Hollow Cylinder
,”
J. Therm. Stresses
0149-5739,
6
(
2–4
), pp.
197
205
.
11.
Goshima
,
T.
, and
Miyao
,
K.
, 1991, “
Transient Thermal Stress in a Hollow Cylinder Subjected to γ-Ray Geating and Convective Heat Losses
,”
Nucl. Eng. Des.
0029-5493,
125
, pp.
267
273
.
12.
Kardomateas
,
G. A.
, 1989, “
Transient Thermal Stresses in Cylindrically Orthotropic Composite Tubes
,”
ASME J. Appl. Mech.
0021-8936,
56
, pp.
411
417
.
13.
Kardomateas
,
G. A.
, 1990, “
The Initial Phase of Transient Thermal Stresses Due to General Boundary Thermal Loads in Orthotropic Hollow Cylinders
,”
ASME J. Appl. Mech.
0021-8936,
57
, pp.
719
724
.
14.
Yee
,
K. C.
, and
Moon
,
T. J.
, 2002, “
Plane Thermal Stress Analysis of an Orthotropic Cylinder Subjected to an Arbitrary, Transient, Asymmetric Temperature Distribution
,”
ASME J. Appl. Mech.
0021-8936,
69
(
5
), pp.
632
640
.
15.
Jane
,
K. C.
, and
Lee
,
Z. Y.
, 1999, “
Thermoelastic Transient Response of an Infinitely Long Annular Multilayered Cylinder
,”
Mech. Res. Commun.
0093-6413,
26
(
6
), pp.
709
718
.
16.
Lee
,
Z. Y.
, 2005, “
Hybrid Numerical Method Applied to 3-D Multilayered Hollow Cylinder With Periodic Loading Conditions
,”
Appl. Math. Comput.
0096-3003,
166
, pp.
95
117
.
17.
Segall
,
A. E.
, 2001, “
Thermoelastic Analysis of Thick-Walled Vessels Subjected to Transient Thermal Loading
,”
ASME J. Pressure Vessel Technol.
0094-9930,
123
, pp.
146
149
.
18.
Mcneill
,
D.
, and
Brock
,
J.
, 1971, “
Engineering Data File Charts for Transient Temperatures in Pipes
,”
Heat./Piping/Air Cond.
0017-940X,
43
, pp.
107
119
.
19.
Marie
,
S.
, 2004, “
Analytical Expression of the Thermal Stresses in a Vessel or Pipe With Cladding Submitted to Any Thermal Transient
,”
Int. J. Pressure Vessels Piping
0308-0161,
81
(
4
), pp.
303
312
.
20.
Segall
,
A. E.
, 2002, “
Useful Polynomials for the Transient Response of Solids Under Mechanical and Thermal Excitations
,”
Int. J. Mech. Sci.
0020-7403,
44
, pp.
809
823
.
21.
Segall
,
A. E.
, 2003, “
Transient Analysis of Thick-Walled Piping Under Polynomial Thermal Loading
,”
Nucl. Eng. Des.
0029-5493,
226
, pp.
183
191
.
22.
Segall
,
A. E.
, 2004, “
Thermoelastic Stresses in an Axisymmetric Thick-Walled Tube Under Arbitrary Internal Transient
,”
ASME J. Pressure Vessel Technol.
0094-9930,
126
, pp.
327
332
.
23.
Shahani
,
A. R.
, and
Nababi
,
S. M.
, 2002, “
Analysis of the Thermoelasticity Problem in Thick-Walled Cylinders
,”
Proceedings of the Tenth Annual (International) Mechanical Engineering Conference
, Tehran, Iran, Vol.
4
, pp.
2056
2062
.
24.
Shahani
,
A. R.
, and
Nababi
,
S. M.
, 2007, “
Analytical Solution of the Quasi-Static Thermoelasticity Problem in a Pressurized Thick-Walled Cylinder Subjected to Transient Thermal Loading
,”
Appl. Math. Model.
0307-904X,
31
(
9
), pp.
1807
1818
.
25.
Lee
,
C. W.
, 1966, “
Thermoelastic Stresses in Thick-Walled Cylinders Under Axial Temperature Gradient
,”
ASME J. Appl. Mech.
0021-8936,
88
, pp.
467
469
.
26.
Yang
,
K. W.
, and
Lee
,
C. W.
, 1971, “
Thermal Stresses in Thick-Walled Circular Cylinders Under Axisymmetric Temperature Distribution
,”
ASME J. Eng. Ind.
0022-0817,
16
, pp.
969
975
.
27.
Cai
,
S. W.
, 1987,
Composite Structure Mechanics
,
China Communications
,
Beijing
, p.
242
.
28.
Han
,
Q.
,
Huang
,
X. Q.
, and
Ning
,
J. G.
, 2002,
Advance Theory of Plate and Shell
,
Science
,
Beijing
, p.
167
.
29.
Segall
,
A. E.
, and
Sipics
,
M. J.
, 2004, “
The Influence of Interpolation Errors on Finite-Element Calculations Involving Stress-Curvature Proportionalities
,”
Finite Elem. Anal. Design
0168-874X,
40
, pp.
1873
1884
.
You do not currently have access to this content.