In the present paper, calculations of the stress intensity factor (SIF) in the linear-elastic range and the J-integral in the elastoplastic domain of cracked structural components are performed by using the shell-to-solid submodeling technique to improve both the computational efficiency and accuracy. In order to validate the submodeling technique, several numerical examples are analyzed. The influence of the choice of the submodel size on the SIF and the J-integral results is investigated. Detailed finite element solutions for elastic and fully plastic J-integral values are obtained for an axially cracked thick-walled pipe under internal pressure. These values are then combined, using the General Electric/Electric Power Research Institute method and the reference stress method, to obtain approximate values of the J-integral at all load levels up to the limit load. The newly developed analytical approximation of the reference pressure for thick-walled pipes with external axial surface cracks is applicable to a wide range of crack dimensions.

1.
Simha
,
N. K.
,
Fischer
,
F. D.
,
Shan
,
G. X.
,
Chen
,
C. R.
, and
Kolednik
,
O.
, 2008, “
J-Integral and Crack Driving Force in Elastic-Plastic Materials
,”
J. Mech. Phys. Solids
0022-5096,
56
(
9
), pp.
2876
2895
.
2.
Kim
,
Y. -J.
,
Shim
,
D. -J.
,
Huh
,
N. -S.
, and
Kim
,
Y. -J.
, 2002, “
Plastic Limit Pressures for Cracked Pipes Using Finite Element Limit Analyses
,”
Int. J. Pressure Vessels Piping
0308-0161,
79
, pp.
321
330
.
3.
Ainsworth
,
R. A.
, 1984, “
The Assessment of Defects in Structures of Strain Hardening Material
,”
Eng. Fract. Mech.
0013-7944,
19
, pp.
633
642
.
4.
R6
, 2001,
Assessment of the Integrity of Structures Containing Defects
, revision 4,
British Energy Generation Ltd.
,
Gloucester, UK
.
5.
Kim
,
Y. J.
,
Kim
,
J. S.
,
Park
,
Y. J.
, and
Kim
,
Y. J.
, 2004, “
Elastic-Plastic Fracture Mechanics Method for Finite Internal Axial Surface Cracks in Cylinders
,”
Eng. Fract. Mech.
0013-7944,
71
, pp.
925
944
.
6.
Moreno
,
J.
, and
Valiente
,
A.
, 2008, “
Assessment of the Reference Stress Method for J-Integral Estimation of Cracked Riveted Beams of an Old Wrought Iron
,”
Eng. Failure Anal.
1350-6307,
15
, pp.
194
207
.
7.
Chiew
,
S. P.
,
Lie
,
S. T.
,
Lee
,
C. K.
, and
Huang
,
Z. W.
, 2001, “
Stress Intensity Factors for a Surface Crack in a Tubular T-Joint
,”
Int. J. Pressure Vessels Piping
0308-0161,
78
, pp.
677
685
.
8.
Lie
,
S. T.
,
Lee
,
C. K.
, and
Wong
,
S. M.
, 2003, “
Model and Mesh Generation of Cracked Tubular Y-Joints
,”
Eng. Fract. Mech.
0013-7944,
70
(
2
), pp.
161
184
.
9.
Lie
,
S. T.
,
Lee
,
C. K.
,
Chiew
,
S. P.
, and
Shao
,
Y. B.
, 2005, “
Mesh Modelling and Analysis of Cracked Uni-Planar Tubular K-Joints
,”
J. Constr. Steel Res.
0143-974X,
61
, pp.
235
264
.
10.
Rice
,
J. R.
, and
Levy
,
N.
, 1972, “
The Part-Through Surface Crack in an Elastic Plate
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
39
, pp.
185
194
.
11.
Parks
,
D. M.
, 1981, “
The Inelastic Line-Spring: Estimates of Elastic-Plastic Fracture Mechanics Parameters for Surface Cracked Plates and Shells
,”
ASME J. Pressure Vessel Technol.
0094-9930,
103
, pp.
246
254
.
12.
Berg
,
E.
,
Skallerud
,
B.
, and
Thaulow
,
C.
, 2008, “
Two-Parameter Fracture Mechanics and Circumferential Crack Growth in Surface Cracked Pipelines Using Line-Spring Elements
,”
Eng. Fract. Mech.
0013-7944,
75
(
1
), pp.
17
30
.
13.
Haryadi
,
S. G.
,
Kapania
,
R. K.
, and
Haftka
,
R. T.
, 1998, “
Global/Local Analysis of Composite Plates With Cracks
,”
Composites, Part B
1359-8368,
29
(
3
), pp.
271
276
.
14.
Bakuckas
,
J. G.
, Jr.
, 2001, “
Comparison of Boundary Correction Factor Solutions for Two Symmetric Cracks in a Straight-Shank Hole
,”
Eng. Fract. Mech.
0013-7944,
68
(
9
), pp.
1095
1106
.
15.
Diamantoudis
,
A.
, and
Labeas
,
G.
, 2005, “
Stress Intensity Factors of Semi-Elliptical Surface Cracks in Pressure Vessels by Global-Local Finite Element Methodology
,”
Eng. Fract. Mech.
0013-7944,
72
, pp.
1299
1312
.
16.
Levy
,
C.
,
Perl
,
M.
, and
Kotagiri
,
S.
, 2008, “
The Combined Stress Intensity Factors of Multiple Longitudinally Coplanar Cracks in Autofrettaged Pressurized Tubes Influenced by the Bauschinger Effect
,”
ASME J. Pressure Vessel Technol.
0094-9930,
130
(
3
), pp.
031208
.
17.
Liu
,
Y.
,
Stratman
,
B.
, and
Mahadevan
,
S.
, 2006, “
Fatigue Crack Initiation Life Prediction of Railroad Wheels
,”
Int. J. Fatigue
0142-1123,
28
(
7
), pp.
747
756
.
18.
Mikhaluk
,
D. S.
,
Truong
,
T. C.
,
Borovkov
,
A. I.
,
Lomov
,
S. V.
, and
Verpoest
,
I.
, 2008, “
Experimental Observations and Finite Element Modelling of Damage Initiation and Evolution in Carbon/Epoxy Non-Crimp Fabric Composites
,”
Eng. Fract. Mech.
0013-7944,
75
(
9
), pp.
2751
2766
.
19.
Hibbitt, Karlsson & Serensen, Inc.
, 2008, ABAQUS/STANDARD. User’s Guide and Theoretical Manual, Version 6.8.
20.
API 579
, 2000, “
Recommended Practice for Fitness-for-Service
,” American Petroleum Institute, Issue 6.
21.
Raju
,
I. S.
, and
Newman
,
J. C.
, 1982, “
Stress-Intensity Factors for Internal and External Surface Cracks in Cylindrical Vessels
,”
ASME J. Pressure Vessel Technol.
0094-9930,
104
, pp.
293
298
.
22.
Miller
,
A. G.
, 1988, “
Review of Limit Loads of Structures Containing Defects
,”
Int. J. Pressure Vessels Piping
0308-0161,
32
, pp.
197
327
.
23.
Tonković
,
Z.
,
Skozrit
,
I.
, and
Alfirević
,
I.
, 2008, “
Influence of Flow Stress Choice on the Plastic Collapse Estimation of Axially Cracked Steam Generator Tubes
,”
Nucl. Eng. Des.
0029-5493,
238
, pp.
1762
1770
.
24.
Tonković
,
Z.
,
Skozrit
,
I.
, and
Sorić
,
J.
, 2005, “
Numerical Modelling of Deformation Responses of Cracked Tubes
,”
Transactions of FAMENA
(Faculty of Mechanical Engineering and Naval Architecture) 1333-1124,
29
(
1
), pp.
31
38
.
25.
Carter
,
A. J.
, 1991, “
A Library of Limit Loads for Fracture Two
,” Nuclear Electric, Report No. TD/SID/REP/0191.
26.
Staat
,
M.
, 2005, “
Local and Global Collapse Pressure of Longitudinally Flawed Pipes and Cylindrical Vessels
,”
Int. J. Pressure Vessels Piping
0308-0161,
82
, pp.
217
225
.
27.
Kumar
,
V.
, and
German
,
M. D.
, 1988, “
Elastic-Plastic Fracture Analysis of Through-Wall and Surface Flaws in Cylinders
,” Electric Power Research Institute, Report No. NP-5596.
28.
Chattopadhyay
,
J.
, 2006, “
Improved J and COD Estimation by GE/EPRI Method in Elastic to Fully Plastic Transition Zone
,”
Eng. Fract. Mech.
0013-7944,
73
, pp.
1959
1979
.
29.
Miller
,
A. G.
, and
Ainsworth
,
R. A.
, 1989, “
Consistency of Numerical Results for Power-Law Hardening Materials and the Accuracy of the Reference Stress Approximation
,”
Eng. Fract. Mech.
0013-7944,
32
, pp.
237
247
.
30.
Kim
,
Y.
,
Huh
,
N.
,
Park
,
Y.
, and
Kim
,
Y.
, 2002, “
Elastic-Plastic J and COD Estimates for Axial Through-Wall Cracked Pipes
,”
Int. J. Pressure Vessels Piping
0308-0161,
79
, pp.
451
464
.
31.
Norms
, 1989, “
Norms for the Calculation of Strength of the Equipment and the Pipelines of Nuclear Power Installations (PNAE G-7-002-86)
,” Regulatory Authority for the Control of Nuclear Power of the USSR-Moscow, Energoatomizdat, in Russian.
You do not currently have access to this content.