The object of this study is to determine the short-term burst pressure of metal cylinders under short-term dynamic loading conditions. The finite element method via the use of the LS-DYNA code (1998, LS-DYNA Theoretical Manual, Livermore Software Technology Corporation) is used to carry out the study. The influence of the geometric parameters diameter (D) and wall thickness (T) as well as loading parameters such as the dynamic pressure versus time function is examined. Additionally, an empirical formula based on experimental data and incorporating the ultimate dynamic strength of low carbon steel is developed. Based on the agreement between the results of the finite element analyses and those of the empirical formula, it can be concluded that a properly modeled finite element analysis (FEA) can be employed with sufficient accuracy to study the short-term dynamic burst pressures of metal cylinders.

1.
Cooper
,
W. E.
, 1957, “
The Significance of the Tensile Test to Pressure Vessel Design
,”
Weld. Res. (Miami, FL, U. S.)
0096-7629,
36
(
1
), pp.
49
56
.
2.
Svensson
,
N. L.
, 1958, “
Burst Pressure of Cylindrical and Spherical Vessels
,”
ASME J. Appl. Mech.
0021-8936,
25
(
1
), pp.
89
96
.
3.
Tadmor
,
E. B.
, and
Durban
,
D.
, 1995, “
Plastic Deformation and Burst of Pressurized Multilayered Cylinders
,”
J. Pressure Vessel Technol.
0094-9930,
117
(
1
), pp.
85
91
.
4.
Klever
,
F. J.
, 1992, “
Burst Strength of Corroded Pipe: Flow Stress Revisited
,”
Proceedings of the 24th Annual Offshore Technology Conference
, Houston, TX, May 4–7.
5.
Steward
,
G.
, and
Klever
,
F. J.
, 1994, “
An Analytical Model to Predict the Burst Capability of Pipelines
,”
Proceedings of the 13th International Conference on Offshore Mechanics and Arctic Engineering
, Houston, TX, Vol.
5
.
6.
Adachi
,
T.
,
Ujihashi
,
S.
, and
Matsumoto
,
H.
, 1991, “
Impulsive Responses of a Circular Cylinder Shell Subject to Water Hammer Waves
,”
J. Pressure Vessel Technol.
0094-9930,
113
, pp.
517
523
.
7.
Leishear
,
R. A.
,
Young
,
C. A.
, and
Alford
,
E. M.
, 2002, “
Dynamic Pipe Stresses During Water Hammer, I, Finite Element Approach
,”
Proceedings of the Design and Analysis of Piping, Vessels and Components, 2002 ASME Pressure Vessels and Piping Conference
, Vancouver, British Columbia, Canada, Aug. 5–9.
8.
Leishear
,
R. A.
, 2002, “
Dynamic Pipe Stresses During Water Hammer, II, A Vibration Analysis
,”
Proceedings of the Design and Analysis of Piping, Vessels and Components, 2002 ASME Pressure Vessels and Piping Conference
, Vancouver, British Columbia, Canada, Aug. 5–9.
9.
Leishear
,
R. A.
, 2002, “
Dynamic Pipe Stresses During Water Hammer, III, Complex Stresses
,”
Proceedings of the Design and Analysis of Piping, Vessels and Components, 2002 ASME Pressure Vessels and Piping Conference
, Vancouver, British Columbia, Canada, Aug. 5–9.
10.
Duffey
,
T. A.
,
Rodriguez
,
E. A.
, and
Romero
,
C.
, 2002, “
Part 1: Detonation-Induced Dynamic Pressure Loading in Containment Vessels
,”
Weld. Res. Counc. Bull.
0043-2326,
477
, pp.
1
30
.
11.
Rodriguez
,
E. A.
, and
Duffey
,
T. A.
, 2002, “
Part 2: Ductile Failure Criteria for Detonation-Induced Pressure Loading in Containment Vessels
,”
Weld. Res. Counc. Bull.
0043-2326,
477
, pp.
31
60
.
12.
Royer
,
C. P.
, and
Rolfe
,
S. T.
, 1974, “
Effect of Strain-Hardening Exponent and Strain Concentrations on the Burst Behavior of Pressure Vessels
,”
ASME J. Eng. Mater. Technol.
0094-4289,
96
(
4
), pp.
292
298
.
13.
Derby
,
R. W.
, 1974, “
Test of 6-Inch-Thick Pressure Vessels Series 1: Intermediate Test Vessels, V-1 and V-2
,” Oak Ridge National Laboratory, Paper No. ORNL-4895.
14.
Bryan
,
R. H.
, 1975, “
Test of 6-Inch-Thick Pressure Vessels Series 2: Intermediate Test Vessels, V-3, V-4, and V-6
,” Oak Ridge National Laboratory, Paper No. ORNL-5059.
15.
Bryan
,
R. H.
, 1978, “
Test of 6-In.-Thick Pressure Vessels, Series 3: Intermediate Test Vessel, V-7B
,” Oak Ridge National Laboratory, Paper Nos. NUREG/CR-0309 and ORNL/NUREG-38.
16.
Bryan
,
R. H.
, 1979, “
Test of 6-In.-Thick Pressure Vessels, Series 3: Intermediate Test Vessel V-8
,” Oak Ridge National Laboratory, Paper Nos. NUREG/CR-0675 and ORNL/NUREG-58.
17.
Merkle
,
J. G.
, 1977, “
Test of 6-In.-Thick Pressure Vessels, Series 4: Intermediate Test Vessels, V-5 and V-9 with Nozzle Corner Cracks
,” Oak Ridge National Laboratory, Paper No. ORNL/NUREG-7.
18.
Rajan
,
K. M.
,
Deshpande
,
U. P.
, and
Narasimhan
,
K.
, 2002, “
Experimental Studies on Bursting Pressure of Thin-Walled Flow Formed Pressure Vessels
,”
J. Mater. Process. Technol.
0924-0136,
125–126
, pp.
228
234
.
19.
Ihmied
,
Y. M.
,
Taylor
,
E. W.
,
Beena
,
A. P.
,
Sundaresan
,
M. K.
, and
Rao
,
B. N.
, 1995, “
Destructive Tests of 15CDV6 Steel Rocket Motor Cases and Their Application to Lightweight Design
,”
Int. J. Pressure Vessels Piping
0308-0161,
6
(
3
), pp.
313
320
.
20.
Loureiro
,
J. F.
,
Netto
,
T. A.
, and
Estefen
,
S. F.
, 2001, “
On the Effect of Corrosion Defects in the Burst Pressure of Pipelines
,”
Proceedings of the 20th International Conference on Offshore Mechanics and Arctic Engineering
, Rio de Janeiro, Brazil, Paper No. OMAE2001/PIPE-4103, pp.
229
237
.
21.
Kisioglu
,
Y.
,
Brevick
,
J. R.
, and
Kinzel
,
G. L.
, 2001, “
Determination of Burst Pressure and Location of the D.OT-39 Refrigerant Cylinders
,”
Proceedings of the Pressure Vessel and Piping Conference
, Vol.
123
, pp.
240
247
.
22.
Chouchaoui
,
B. A.
,
Pick
,
R. J.
, and
Yost
,
D. B.
, 1992, “
Burst Pressure Prediction of Line Pipe Containing Single Corrosion Pits Using Finite Element Method
,”
Proceedings of the OMAE, A, Pipeline Technology ASME
, Vol.
5
, pp.
203
210
.
23.
Cronin
,
D. S.
, 2002, “
Finite Element Analysis of Complex Corrosion Defects
,”
Proceedings of the Pressure Vessel and Piping Conference, Computational Mechanics: Developments and Applications
, Vol.
441
, pp.
55
61
.
24.
Xue
,
L. P.
, 2006, “
A Comprehensive Examination of Cylindrical Shell Intersections
,” Ph.D. thesis, Marquette University, Milwaukee, WI.
25.
2006,
Companion Guide to the ASME Boiler & Pressure Vessel Code
,
K. R.
Rao
, ed.,
ASME
,
New York
, Vol.
1
.
26.
1998, LS-DYNA Theoretical Manual, Livermore Software Technology Corporation.
27.
Hampton
,
E. J.
and
Bitner
,
J. L.
, 2005, “
Stress or Strain Criteria for Combined Static and Dynamic Loading
,”
Weld. Res. Counc. Bull.
0043-2326,
500
,
1
233
.
28.
Carpenter
,
R. C.
, and
Barraclough
,
S. H.
, 1983, “
Some Experiments on the Effect of Water Hammer
,”
Proceedings of the New York Meeting of the ASME
, Vol.
15
, pp.
510
535
.
29.
Covas
,
D.
,
Stoianov
,
I.
,
Ramos
,
H.
,
Graham
,
N.
,
Maksimović
,
C.
, and
Butler
,
D.
, 2004, “
Water Hammer in Pressurized Polyethylene Pipes: Conceptual Model and Experimental Analysis
,”
Urban Water
1462-0758,
1
(
2
), pp.
177
197
.
30.
Rodabaugh
,
E. C.
, 1988, “
A Review of Area Replacement Rules for Pipe Connections in Pressure Vessels and Piping
,”
Weld. Res. Counc. Bull.
0043-2326,
335
, pp.
1
57
.
31.
Baker
,
W. E.
,
Kulesz
,
J. J.
,
Westine
,
P. S.
,
Cox
,
P. A.
, and
Wilbeck
,
J. S.
, 1980,
A Manual for the Prediction of Blast and Fragment Loadings on Structures
,
United States Department of Energy
,
Amarillo, TX
.
You do not currently have access to this content.