Alumina ceramic is being used extensively for external pressure vessels in naval applications. The material is also used in valves and other components, where reliability, immunity from corrosion, and high temperatures are required. This report presents a technique for the nondestructive evaluation of alumina ceramic components. The cracks were produced by CO2 laser radiation. Since there is a need for the detection of very fine cracks, scanning acoustic microscopy was found to be superior to optical methods for imaging surface and subsurface cracks. We address the issue of crack initiation with the use of postirradiation analysis. This article reports our results on the evaluation of the surface and interior cracks with optical, scanning laser, scanning electron, and scanning acoustic microscopy. We present images of surface and subsurface microcracks generated at different power levels of a high power CO2 laser system. The spatial variation of the Rayleigh wave velocity is measured by the V(z) curve technique. These preliminary data suggest that, with some improvement, the V(z) technique may detect residual stress with high spatial resolution.

1.
Johnson
,
R. P.
,
Kurkchubasche
,
R. T.
, and
Stachio
,
J. D.
, 1993, “
Structure Performance of Cylindrical Pressure Housings of Different Ceramic Compositions Under External Pressure Loading. Part I. Isostatcially Pressed Alumina Ceramic
,” Naval Command Control and Ocean Surveillance Center, San Diego, Technical Report No. 1590.
2.
Johnson
,
R. P.
, 1993, “
Structural Design Criteria for Alumina Ceramic Deep Submergence Pressure Housings
,”
The Marine Technology Society MTS 1993 Conference
, Long Beach, CA.
3.
Stachio
,
J. D.
,
Johnson
,
R. P.
, and
Kurchubasche
,
R. R.
, 1993, “
Evaluation of Scale Model Ceramic Housing for Deep Submergence—Fifth Generation Housings
,” NRaD TR 1582 (Mar) NCCOSC RDT&E Division, Sand Diego, CA.
4.
Jones
,
L. B.
, 2004, “
The State of the Technology: Manned Submersibles
,” US Submarine, Inc. News Resource Article.
5.
Copley
,
S. W.
,
Wallace
,
R. J.
, and
Bass
,
M.
, 1983, “
Laser Shaping of Materials
,”
Lasers In Materials Processing
,
E. A.
Metzbower
, ed.,
ASME
, Metals Park, Ohio.
6.
Yamamoto
,
J.
, and
Yamamoto
,
Y.
, 1987, “
Laser Machining of Silicon Nitride
,” in
Proceedings of the International Conference on Laser Advanced Materials Processing-Science and Applications
, pp.
297
302
.
7.
DeBastiani
,
D.
,
Modest
,
M. F.
, and
Stubican
,
V. S.
, 1990, “
Mechanism of Reactions During CO2-Laser Processing of Silicon Carbide
,”
J. Am. Ceram. Soc.
0002-7820,
73
(
7
), pp.
1947
1952
.
8.
Morita
,
N.
, 1993, “
Generation and Propagation Behavior of Laser Induced Thermal Cracks
,”
J. Ceram. Soc. Jpn.
0914-5400,
101
, pp.
522
527
.
9.
Modest
,
M. F.
, 1997, “
Transit Elastic and Viscoelastic Thermal Stress During Laser Drilling of Ceramics
,” in
Proceedings of the ICALEO 97, 16th international Conference on Applications of Lasers and Electro-Optics
.
10.
Quate
,
C. F.
,
Atala
,
A.
, and
Wickramasinghe
,
H. K.
, 1979, “
Acoustic Microscopy with Mechanical Scanning—A Review
,”
Proc. IEEE
0018-9219,
67
, pp.
1092
1114
.
11.
Yamanaka
,
K.
, and
Enomoto
,
Y.
, 1982, “
Observation of Surface Cracks with Scanning Acoustic Microscope
,”
J. Appl. Phys.
0021-8979,
53
, pp.
846
850
.
12.
Yamanaka
,
K.
,
Enomoto
,
Y.
, and
Tsuya
,
Y.
, 1983, “
Application of Acoustic Microscope to the Study of Fracture and Wear
,” in
Acoustical Imaging
,
E. A.
Ash
and
C.
Hill
, Eds.,
Plenum
, New York, Vol.
12
, pp.
79
82
.
13.
Atalar
,
A.
, 1978, “
An Angular Spectrum Approach to Contrast in Reflection Acoustic Microscopy
,”
J. Appl. Phys.
0021-8979,
49
, pp.
5130
5139
.
14.
Atalar
,
A.
, 1979, “
A Physical Model for Acoustic Signature
,”
J. Appl. Phys.
0021-8979,
50
, pp.
8237
8239
.
15.
Weglein
,
R. D.
, 1979, “
A Model for Predicting Acoustic Materials Signatures
,”
Appl. Phys. Lett.
0003-6951,
34
, pp.
179
181
.
16.
Parmon
,
W.
, and
Bertoni
,
H. L.
, 1979, “
Ray Interpretation of the Material Signature in the Acoustic Microscope
,”
Electron. Lett.
0013-5194,
15
, pp.
684
686
.
17.
Bertoni
,
H. L.
, 1984, “
Ray-Optical Evaluation of V(z) in the Reflection Acoustic Microscope
,”
IEEE Trans. Sonics Ultrason.
0018-9537,
SU-31
, pp.
105
116
.
18.
Kushibiki
,
J.
,
Ohkubo
,
A.
, and
Chubachi
,
N.
, 1982, “
Linearly Focused Acoustic Beams for Acoustic Microscopy
,”
Electron. Lett.
0013-5194,
18
, pp.
668
670
.
19.
Kushibiki
,
J.
,
Chubachi
,
N.
, and,
Tejima
,
E.
, 1989, “
Quantitative Evaluation of Materials by Directional Acoustic Microscope
,”
Ultrason. Imaging
0161-7346,
89
, pp.
736
743
.
20.
Kushibiki
,
J.
,
Takahashi
,
H.
,
Kobayashi
,
T.
, and
Chubachi
,
N.
, 1991, “
Quantitative Evaluation of Elastic Properties of LiTaO3 Crystals by Line-Focus-Beam Acoustic Microscopy
,”
Appl. Phys. Lett.
0003-6951,
58
, pp.
893
895
.
21.
Kushibiki
,
J.
,
Takahashi
,
H.
,
Kobayashi
,
T.
, and
Chubachi
,
N.
, 1991, “
Characterization of LiNbO3 Crystals by Line-Focus-Beam Acoustic Microscopy
,”
Appl. Phys. Lett.
0003-6951,
58
, pp.
2622
2624
.
22.
Kushibiki
,
J.
, and
Chubachi
,
N.
, 1985, “
Material Characterization by Line-Focus Beam Acoustic Microscope
,”
IEEE Trans. Sonics Ultrason.
0018-9537,
SU-32
, p.
89
.
23.
Liang
,
K. K.
,
Bennet
,
S. D.
,
Khuri-Yakub
,
B. T.
, and
Kaino
,
G. S.
, 1985, “
Precice Phase Measurements with the Acoustic Microscope
,”
IEEE Trans. Sonics Ultrason.
0018-9537,
SU-32
, pp.
266
273
.
24.
Liang
,
K. K.
,
Kino
,
G. S.
, and
Khuri-Yakub
,
B. T.
, 1985, “
Material Characterization by the Inversion of V(z)
,”
IEEE Trans. Sonics Ultrason.
0018-9537,
SU-32
(
2
), pp.
213
224
.
25.
Liang
,
K. K.
,
Kino
,
G. S.
, and
Khuri-Yakub
,
B. T.
, 1985, “
Precise Phase Measurements with the Acoustic Microscope
,”
IEEE Trans. Sonics Ultrason.
0018-9537,
SU-32
, pp.
266
273
.
26.
Liang
,
K. K.
,
Bennet
,
S. D.
, and
Kaino
,
G. S.
, 1986, “
Precision Phase Measurements with Short Tone Burst Signals in Acoustic Microscopy
,”
Rev. Sci. Instrum.
0034-6748,
57
, pp.
446
452
.
27.
Endo
,
T.
,
Sasaki
,
Y.
,
Yamagishi
,
T.
, and
Sakai
,
M.
, 1992, “
Determination Sound Velocities by High Frequency Complex V(z) Measurements in Acoustic Microscopy
,”
Jpn. J. Appl. Phys., Suppl.
0021-4922,
31-1
, p.
160
.
28.
Endo
,
T.
,
Abe
,
C.
,
Sakai
,
M.
, and
Ohno
,
M.
, 1993, “
Measurement of Dispersion Relation in Acoustic Velocities for the Thin Film on an Anisotropic Substrate Using Acoustic Microscope
,”
IEEE Ultrason.
Inter. ’93 Proc.
, p.
45
.
29.
Sasaki
,
Y.
,
Endo
,
T.
,
Yamagishi
,
T.
, and
Sakai
,
M.
, 1992, “
Thickness Measurement of Thin-Film Layer on an Anisotropic Substrate by Phase-Sensitive Acoustic Microscope
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
39
, p.
638
.
30.
Nishida
,
M.
, and
Endo
,
T.
, 1993, “
Measurement of Elastic Moduli in Local Area by Scanning Acoustic Microscope
,”
Experimental and Theoretical MECHANICS ’93, Proc.
, p.
290
.
31.
Obata
,
M.
,
Shimada
,
H.
, and
Miura
,
T.
, 1990, “
Stress Dependence of Leaky Surface Wave on PMMA by Line-Focus-Beam Acoustic Microscope
,”
Exp. Mech.
0014-4851, pp.
34
39
.
32.
Okade
,
M.
,
Mizuno
,
K.
, and
Kawashima
,
K.
, 1995, “
Measurement of Acoustoelastic Coefficients of Surface Wave with Scanning Acoustic Microscope
,”
Rev. Prog. Quant. Nondestr. Eval.
0743-0760,
14
, pp.
1883
1889
.
33.
Okade
,
M.
,
Hasebe
,
T.
,
Kawai
,
T.
, and
Kawashima
,
K.
, 1996, “
New Digital Techniques for Precise Measurement of Surface Wave Velocity with Acoustic Microscope
,”
Mater. Sci. Forum
0255-5476,
210–213
, pp.
839
846
.
34.
Okade
,
M.
, and
Kawashima
,
K.
, 1996, “
Localized Stress Measurement of Aluminum Alloy with Acoustic Microscope
,”
Mater. Sci. Forum
0255-5476,
210–213
, pp.
163
170
.
35.
Kasuga
,
Y.
,
Endo
,
T.
,
Miyasaka
,
C.
, and
Kasano
,
H.
, 1999, “
Evaluation of Deformation Induced Transformation and Reversion Process of Stainless Steel by Acoustic Microscope
,”
JSME
0855-1146,
65
, No.
633
, pp.
192
198
.
36.
Miyasaka
,
C.
,
Tittmann
,
B. R.
, and
Tanaka
,
S.
, 2002, “
Characterization of Stress at a Ceramic∕Metal Joint Interface by the V(z) Technique of Scanning Acoustic Microscopy
,”
J. Pressure Vessel Technol.
0094-9930,
124
, No.
3
, pp.
336
342
.
37.
Miyasaka
,
C.
,
Tittmann
,
B. R.
, and
Tanaka
,
S.
, 2002, “
Stress Characterization of a Ceramic∕Metal Jointed Interface Collimated X-Ray Beam Radiography and Scanning Acoustic Microscopy
,”
Nondestr. Test. Eval.
1058-9759,
18
,
3–4
, pp.
131
148
.
38.
Kushibiki
,
J.
,
Okubo
,
A.
, and
Chubachi
,
N.
, 1982, “
Effect of Leaky SAW Parameters on V(z) Curves Obtained by Acoustic Microscopy
,”
Electron. Lett.
0013-5194,
18
(
15
), pp.
668
670
.
39.
Aslan
,
M.
,
Beausang
,
J.
, and
Tittmann
,
B. R.
, 1999, “
Determining the Energy of Laser Induced Cracks in Alumina Substrate via Acoustic Emission
,”
Quantitative Nondestructive Evaluation
,
D. O.
Thompson
and
D. E.
Chimenti
, eds., Vol.
19
, pp.
359
366
.
You do not currently have access to this content.