The oxidation behavior of 214Cr-1Mo steel was studied at 600, 700 and 800°C for a sequence of times up to 1000 h, using cylindrical specimens of the material, similar to testpieces used in high-temperature creep testing. The various samples exposed to different degrees of oxidation were investigated by optical and electron scanning microscopy and X-ray diffractometry. The oxidation rate expressed as gain of mass per area was observed to gradually slow down with the exposure time according to an approximated parabolic behavior, at all temperature levels. Multilayer oxide formation was observed to occur involving oxides with various compositions and crystallographic structures. Three main oxide layers were detected: (a) an internal one, of an FeOs˙Fe2x.CrxO3 spinel form, containing: molybdenum; (b) an intermediate one, of an FeOs˙Fe2O3 magnetite type; (c) an external one consisting of α Fe2O3 hematite. In some instances, there was a fourth stratum formation in local spaces left by a separation between the hematite and magnetite interfaces. Each of these layers was observed to exhibit different morphological aspects, with needlelike crystals of hematite occurring at the free external surface of the material.

1.
Bradford, S. A., 1987, “Fundamentals of Corrosion in Gases,” Metals Handbook/Corrosion, 1st Edition, 13, pp. 61–76.
2.
Wood
,
G. C.
,
1961
, “
The Oxidation of Iron-Chromium Alloys and Stainless Steels at High Temperatures
,”
Corros. Sci.
,
2
, pp.
173
196
.
3.
Lai
,
D.
,
Borg
,
R. J.
,
Brabers
,
M. J.
,
Mackenzie
,
J. D.
, and
Birchenall
,
C. E.
,
1961
, “
Oxidation of Iron-Chromium Alloys at 750–1025°C
,”
Corrosion/Nace
,
17
, pp.
109
116
.
4.
Mortimer
,
D.
, and
Sharp
,
W. B. A.
,
1968
, “
Oxidation of Fe-Cr binary alloys
,”
British Corrosion J.
,
3
, pp.
61
67
.
5.
Cox
,
M. G. C.
,
Enaney
,
B.
, and
Scott
,
V. D.
,
1972
, “
A Chemical Diffusion Model for Partitioning of Transition Elements in Oxide Scales on Alloys
,”
Philos. Mag.
,
26
, pp.
839
851
.
6.
Labun
,
P. A.
,
Covington
,
J.
,
Kuroda
,
K.
,
Welsch
,
G.
, and
Mitchell
,
T. E.
,
1982
, “
Microstructural Investigation of the Oxidation of an Fe-3 percent Cr Alloy
,”
Metall. Trans. A
,
13A
, pp.
2103
2112
.
7.
Kahveci
,
A. K.
, and
Welsch
,
G.
,
1983
, “
High Temperature Oxidation of Fe-3wt percent Cr Alloy
,”
Scr. Metall.
,
17
, pp.
1211
126
.
8.
Simms
,
N. J.
, and
Little
,
J. A.
,
1987
, “
High Temperature Oxidation of Fe-214Cr-1 Mo in Oxygen
,”
Oxid. Met.
,
27
, pp.
283
299
.
9.
Simms
,
N. J.
, and
Little
,
J. A.
,
1988
, “
Scale Growth on 214Cr-1Mo Steel
,”
Mater. Sci. Technol.
,
4
, pp.
1133
1139
.
10.
Khanna
,
A. S.
,
Jha
,
B. B.
, and
Raj
,
B.
,
1985
, “
Detection of Breakaway Oxidation and Spalling in the Oxide Scales of 214Cr-1Mo Steel Using Acoustic Emission Technique
,”
Oxid. Met.
,
23
, pp.
159
176
.
11.
Khanna
,
A. S.
, and
Gnanamoorthy
,
J. B.
,
1985
, “
Effect of Cold Work on the Oxidation Resistance of 214Cr-1Mo Steel
,”
Oxid. Met.
,
3
, pp.
17
33
.
12.
Christl
,
W.
,
Rahmel
,
L. A.
, and
Schutze
,
M.
,
1989
, “
Behavior of Oxide Scale on 214Cr-1Mo Steel During Thermal Cycling—Part I: Scales Formed in Oxygen and Air
,”
Oxid. Met.
,
31
, pp.
1
34
.
13.
Christl
,
W.
,
Rahmel
,
A.
, and
Schutze
,
M.
,
1989
, “
Behavior of Oxide Scale on 214Cr-1Mo Steel During Thermal Cycling—Part II: Scales Grown in Water Vapor
,”
Oxid. Met.
,
31
, pp.
35
69
.
14.
Singh Raman
,
R. K.
,
Khanna
,
A. S.
,
Tiwari
,
R. K.
, and
Gnanamoorthy
,
J. B.
,
1992
, “
Influence of Grain Size on the Oxidation Resistance of 214Cr-1Mo Steel
,”
Oxid. Met.
,
37
, pp.
1
12
.
15.
Sing Raman
,
R. K.
,
Gnanamoorthy
,
J. B.
, and
Roy
,
S. K.
,
1993
, “
Oxidation Behavior of 214Cr-1Mo Steel With Prior Tempering at Different Temperatures
,”
Oxid. Met.
,
40
, pp.
21
36
.
16.
Bueno
,
L. O.
, and
Marino
,
L.
,
2001
, “
High Temperature Oxidation Behavior of 214Cr-1Mo Steel in Air. Part 2: Scale Growth and Metal Loss Kinetics
,”
ASME J. Pressure Vessel Technol.
,
123
, Feb., pp.
97
104
.
17.
Bueno, L. O., Marino, L., and DeCarli, C. M., 1999, “Preliminary Results on Possible Effects of Oxidation on Creep Curves of 214Cr-1Mo Steel in Air,” Proc. COMPASS’99 Conference—Component Optimization from Materials Properties and Simulation Software, Evans, eds., W. J. et al., Chameleon Press Ltd., University of Wales, Swansea (UK), pp. 177–183.
18.
Pfeil
,
L. B.
,
1929
, “
The Oxidation of Iron and Steel at High Temperatures
,”
J. Iron Steel Inst., London
,
119
, pp.
501
547
.
19.
Antill
,
J. E.
,
Peakall
,
K. A.
, and
Warburton
,
J. B.
,
1968
, “
Oxidation of Mild and Low Alloy Steel in CO Based Atmospheres
,”
Corros. Sci.
,
8
, pp.
689
701
.
20.
Hodge
,
J. D.
,
1978
, “
Diffusion of Chromium in Magnetite as Function of Oxygen Partial Pressure
,”
J. Electrochem. Soc.
,
125
, pp.
55C–57C
55C–57C
.
21.
Mitchell
,
T. E.
,
Voss
,
D. A.
, and
Butler
,
E. P.
,
1982
, “
The Observation of Stress Effects During the High Temperature Oxidation of Iron
,”
J. Mater. Sci.
,
17
, pp.
1825
1833
.
22.
Hsueh
,
C. H.
, and
Evans
,
A. G.
,
1983
, “
Oxidation Induced Stress and Some Effects on the Behavior of Oxide Films
,”
J. Appl. Phys.
,
54
, pp.
6672
6686
.
23.
Voss
,
D. A.
,
Butler
,
E. P.
, and
Mitchell
,
T. E.
,
1982
, “
The Growth of Hematite Blades During the High Temperature Oxidation of Iron
,”
Metall. Trans. A
,
134
, pp.
929
935
.
You do not currently have access to this content.