Recently, structural design against a new type of thermal ratcheting under a null-primary-stress condition has been required. The representative case is the thermal ratcheting of a hollow cylinder caused by a traveling temperature distribution. In this paper, the mechanism of this ratcheting is proposed, and the evaluation method of ratcheting strain is shown based on this mechanism. The proposed evaluation method is basically based on the hoop-membrane stress due to the axial temperature distribution, and considers the influence of axial bending stress and traveling distance of temperature distribution. Predicted results by this method correspond to numerical results by FEM and can conservatively estimate the experimental results with several kinds of traveling distance, stress levels, and two types of temperature hold for types 316 and 316FR stainless steels. [S0094-9930(00)01102-1]

1.
Bree
,
J.
,
1967
, “
Elastic Plastic Behavior of Thin Tubes Subjected to Internal Pressure and Intermittent High Heat Fluxes with Application to Fast Nuclear Reactor Fuel Elements
,”
J. Strain Anal.
,
2
, pp.
226
238
.
2.
O’Donnell, W. J., and Porowski, J., 1974, “Upper Bounds for Accumulated Strains due to Creep Ratchetting,” Weld. Res. Counc. Bull., No. 195, pp. 57–62.
3.
Roche
,
R. L.
,
Moulin
,
D.
, and
Levy
,
J.
,
1982
, “
Practical Analysis of Ratchetting
,”
Nucl. Eng. Des.
,
71
, pp.
51
66
.
4.
Goodman, A. M., 1977, “Incremental Plastic Deformation of a Cylinder Subjected to Cyclic Thermal Loading,” Nonlinear Problems in Stress Analysis, P. Stanley, ed., Applied Science Publishers, London, UK, pp. 317–344.
5.
Ponter
,
A. R. S.
, and
Karadeniz
,
S.
,
1985
, “
An Extended Shakedown Theory for Structures That Suffer Cyclic Thermal Loading, Part 1—Theory, Part 2—Applications
,”
ASME J. Appl. Mech.
,
52
, pp.
877
889
.
6.
Karadeniz
,
S.
,
Ponter
,
A. R. S.
, and
Carter
,
K. F.
,
1987
, “
The Plastic Ratchetting of Thin Cylindrical Shells Subjected to Axisymmetric Thermal and Mechanical Loading
,”
ASME J. Pressure Vessel Technol.
,
109
, pp.
387
393
.
7.
Taleb, L., Cousin, M., Jullien, J. F., and Waeckel, N., 1997, “A Review of Simplified Methods for the Ratchetting Assessment,” Transaction of the 14th International Conference on Structural Mechanics in Reactor Technology, M. Livolant, ed., International Association for Structural Mechanics in Reactor Technology, 3, pp. 77–84.
8.
Cabrillat, M. T., and Meziere, Y., 1997, “Evaluation of Ratchetting on Experimental Tests Using Simplified Design Rules,” Transactions of the 14th International Conference on Structural Mechanics in Reactor Technology, M. Livolant, ed., International Association for Structural Mechanics in Reactor Technology, 3, pp. 13–20.
9.
Takahashi
,
Y.
,
1995
, “
Application of a Two-Surface Plasticity Model for Thermal Ratchetting and Failure Life Estimation in Structural Model Tests
,”
Nucl. Eng. Des.
,
153
, pp.
245
256
.
10.
Kobayashi
,
M.
, and
Ohno
,
N.
,
1996
, “
Thermal Ratchetting of a Cylinder Subjected to a Moving Temperature Front: Effect of Kinematic Hardening Rules on the Analysis
,”
Int. J. Plast.
,
12
, pp.
255
271
.
11.
Ohno
,
H.
, and
Kobayashi
,
M.
,
1997
, “
Analysis of Thermal Ratchetting of Cylinders Subjected to Axial Movement of Temperature Distribution
,”
Eur. J. Mech. A/Solids
,
16
, pp.
1
18
.
12.
Igari, T., Kobayashi, M., Imatani, S., Takahashi, Y., Take, K., and Inoue, T., 1997, “Inelastic Analysis of New Thermal Ratchetting due to Moving Temperature Front—Results of Benchmark Project (A) by JSMS,” Transaction of the 14th International Conference on Structural Mechanics in Reactor Technology, M. Livolant, ed., International Association for Structural Mechanics in Reactor Technology, 9, pp. 213–220.
13.
Kobayashi
,
M.
,
Ohno
,
N.
, and
Igari
,
T.
,
1998
, “
Ratchetting Characteristics of 316FR Steel at High Temperature, Part 2: Analysis of Thermal Ratchetting Induced by Spatial Variation of Temperature
,”
Int. J. Plast.
,
14
, pp.
373
390
.
14.
Wada
,
H.
,
Igari
,
T.
, and
Kitade
,
S.
,
1989
, “
Prediction Method for Thermal Ratchetting of a Cylinder Subjected to Axially Moving Temperature Distribution (in Japanese)
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
,
55
, pp.
985
993
.
15.
Wada
,
H.
,
Kaguchi
,
H.
,
Ueta
,
M.
,
Ichiyama
,
M.
,
Kimura
,
K.
,
Fukuda
,
Y.
, and
Suzuki
,
M.
,
1993
, “
Proposal of a New Estimation Method for the Thermal Ratchetting of a Cylinder Subjected to a Moving Temperature Distribution
,”
Nucl. Eng. Des.
,
139
, pp.
261
267
.
16.
Igari
,
T.
,
Kitade
,
S.
,
Ueta
,
M.
,
Ichimiya
,
M.
,
Kimura
,
K.
,
Saton
,
Y.
, and
Take
,
K.
,
1993
, “
Advanced Evaluation of Thermal Ratchetting of FBR Components
,”
Nucl. Eng. Des.
,
140
, pp.
341
348
.
17.
Kitade, S., Igari, T., Ueta, M., Dousaki, M., Wada, H., Ogawa, K., and Jinbo, M., 1993, “Thermal Ratchetting of Cylinder Subjected to Short Travel of Axial Temperature Distribution,” ASME PVP-Vol. 266, Creep, Fatigue Evaluation and Leak-Before-Break Assessment, Y. S. Garud, ed., ASME, New York, NY, pp. 81–88.
18.
Igari
,
T.
,
Yamauchi
,
M.
,
Kitade
,
S.
,
Kawasaki
,
K.
,
Wada
,
H.
, and
Kamishima
,
Y.
,
1990
, “
Ratchetting Behavior of a Cylinder Subjected to Thermal Stress Alone (in Japanese)
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
,
56
, pp.
1217
1225
.
19.
Timoshenko, S., and Krieger, S. W., 1959, Theory of Plates and Shells, Chap. 15, Sect. 114, McGraw-Hill Book Company, New York, NY.
20.
Kitade
,
S.
,
Igari
,
T.
,
Fukahori
,
O.
, and
Ohigashi
,
H.
,
1990
, “
Creep-Fatigue Life Assessment for Combustion-Chamber of the First Stage Engine of H-II Rocket
,”
Mitsubishi Juko Giho
,
27
, No.
6
, pp.
1
6
.
21.
Ogawa, K., Ueta, M., Kanaoka, T., Kitade, S., Ueno, T., and Takahashi, S., 1991, “Applicability of Simplified Estimation Method to Thermal Ratchetting of FBR Component,” Transaction of the 11th International Conference on Structural Mechanics in Reactor Technology, H. Shibata, ed., Atomic Energy Society of Japan, Tokyo, Vol. E, pp. 209–214.
22.
Igari, T., Otani, T., Wada, H., Jimbo, M., and Fujioka, T., 1998, “Influence of Creep and Thermal Aging on Thermal Ratchetting due to Moving Temperature Front,” ASME PVP-Vol. 360, Pressure Vessel and Piping Codes and Standards, B. T. Lubin, et al., eds., Book No. H01150-1998, ASME, New York, NY, pp. 291–299.
You do not currently have access to this content.