Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The International Maritime Organization’s recent approval of the 2023 strategy on reduction of greenhouse gas emissions amplifies the pressure on stakeholders to achieve net-zero emissions in shipping by 2050. Considering the anticipated predominance of traditional single-fuel engines into the next decade, due to their high efficiency and economic benefits, the implementation of operational measures stands as the foremost effective method for mitigating emissions and reducing fuel consumption. Accurate fuel consumption prediction is crucial for informed decision-making and operational efficiency. This paper introduces an innovative hybrid model, combining an advanced physics-based model with an expert-augmented neural network, offering superior fuel consumption predictions. Expert knowledge is integrated into the neural network model to enhance its learning capabilities. Performance is validated against DNV Navigator Insight and publicly available fuel consumption reporting data, demonstrating superiority over purely data-driven and physics-based models. This hybrid approach bridges accuracy and scalability for sustainable maritime operations.

References

1.
Stalk
,
P.
,
2021
, “
Review of Maritime Transport
,”
United Nations Conference on Trade and Development
,
Online
, pp.
1
177
.
2.
IMO
,
2023
, “
2023 IMO Strategy on Reduction of GHG Emissions From Ships
,”
IMO MPEC 80
, p.
11
.
3.
DHL
,
2023
, “
All You Need to Know About the IMO 2023 Regulation
.” https://www.dhl.com/global-en/home/our-divisions/global-forwarding/forwarding-insights/imo-2023.html.
4.
Bouman
,
E. A.
,
Lindstad
,
E.
,
Rialland
,
A. I.
, and
Strømman
,
A. H.
,
2017
, “
State-of-the-Art Technologies, Measures, and Potential for Reducing GHG Emissions From Shipping-A Review
,”
Transp. Res. Part D: Transp. Environ.
,
52
(
Part A
), pp.
408
421
.
5.
Oliveira
,
D. R.
,
Lagerström
,
M.
,
Granhag
,
L.
,
Werner
,
S.
,
Larsson
,
A. I.
, and
Ytreberg
,
E.
,
2022
, “
A Novel Tool for Cost and Emission Reduction Related to Ship Underwater Hull Maintenance
,”
J. Clean. Prod.
, 356, p.
131882
.
6.
Meyer
,
J.
,
Stahlbock
,
R.
, and
Voß
,
S.
,
2012
, “
Slow Steaming in Container Shipping
,”
International Conference on System Sciences
,
Maui, HI
,
Jan. 4–7
, IEEE, pp.
1306
1314
.
7.
Mjelde
,
A.
,
Martinsen
,
K.
,
Eide
,
M.
, and
Endresen
,
Ø.
,
2014
, “
Environmental Accounting for Arctic Shipping-A Framework Building on Ship Tracking Data From Satellites
,”
Mar. Pollut. Bull.
,
87
(
1–2
), pp.
22
28
.
8.
Guo
,
B.
,
Liang
,
Q.
,
Tvete
,
H. A.
,
Brinks
,
H.
, and
Vanem
,
E.
,
2022
, “
Combined Machine Learning and Physics-Based Models for Estimating Fuel Consumption of Cargo Ships
,”
Ocean Eng.
,
255
, p.
111435
.
9.
Yan
,
R.
,
Wang
,
S.
, and
Psaraftis
,
H. N.
,
2021
, “
Data Analytics for Fuel Consumption Management in Maritime Transportation: Status and Perspectives
,”
Transp. Res. Part E: Logist. Transp. Rev.
,
155
, p.
102489
.
10.
Knutsen
,
K. E.
,
Liang
,
Q.
,
Karandikar
,
N.
,
Ibrahim
,
I. H. B.
,
Tong
,
X. G. T.
, and
Tam
,
J. J. H.
,
2022
, “
Containerized Immutable Maritime Data Sharing Utilizing Distributed Ledger Technologies
,”
J. Phys. Conf. Ser.
,
2311
, p.
012006
.
11.
Liang
,
Q.
,
Knutsen
,
K. E.
,
Vanem
,
E.
,
Æsøy
,
V.
, and
Zhang
,
H.
,
2024
, “
A Review of Maritime Equipment Prognostics Health Management From a Classification Society Perspective
,”
Ocean Eng.
, 301, p.
117619
12.
IMO
,
2016
. “
Annex 3 Resolution mepc.278(70)
,”
IMO MEPC 70
, p.
1
.
13.
Liang
,
Q.
,
Tvete
,
H. A.
, and
Brinks
,
H. W.
,
2019
, “
Prediction of Vessel Propulsion Power Using Machine Learning on AIS Data, Ship Performance Measurements and Weather Data
,”
J. Phys. Conf. Ser.
,
1357
, p.
012038
.
14.
Liang
,
Q.
,
Tvete
,
H.
, and
Brinks
,
H.
,
2020
, “
Prediction of Vessel Propulsion Power From Machine Learning Models Based on Synchronized AIS-, Ship Performance Measurements and ECMWF Weather Data
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
929
, p.
012012
.
15.
Liang
,
Q.
,
Vanem
,
E.
,
Knutsen
,
K. E.
, and
Zhang
,
H.
,
2022
, “
Data-Driven Prediction of Ship Propulsion Power Using Spark Parallel Random Forest on Comprehensive Ship Operation Data
,”
2022 IEEE 17th International Conference on Control & Automation (ICCA)
,
Naples, Italy
,
June 27–30
, IEEE, pp.
303
308
.
16.
Han
,
P.
,
Li
,
G.
,
Cheng
,
X.
,
Skjong
,
S.
, and
Zhang
,
H.
,
2021
, “
An Uncertainty-Aware Hybrid Approach for Sea State Estimation Using Ship Motion Responses
,”
IEEE Trans. Ind. Inf.
,
18
(
2
), pp.
891
900
.
17.
Wang
,
T.
,
Li
,
G.
,
Hatledal
,
L. I.
,
Skulstad
,
R.
,
Æsøy
,
V.
, and
Zhang
,
H.
,
2021
, “
Incorporating Approximate Dynamics Into Data-Driven Calibrator: A Representative Model for Ship Maneuvering Prediction
,”
IEEE Trans. Ind. Inf.
,
18
(
3
), pp.
1781
1789
.
18.
Karniadakis
,
G. E.
,
Kevrekidis
,
I. G.
,
Lu
,
L.
,
Perdikaris
,
P.
,
Wang
,
S.
, and
Yang
,
L.
,
2021
, “
Physics-Informed Machine Learning
,”
Nature Rev. Phys.
,
3
(
6
), pp.
422
440
.
20.
Tvete
,
H. A.
,
Guo
,
B.
,
Liang
,
Q.
, and
Brinks
,
H.
,
2020
, “
A Modelling System for Power Consumption of Marine Traffic
,”
International Conference on Offshore Mechanics and Arctic Engineering, Vol. 84379
,
American Society of Mechanical Engineers
, p.
V06AT06A029
.
21.
Holtrop
,
J.
, and
Mennen
,
G.
,
1982
, “
An Approximate Power Prediction Method
,”
Int. Shipbuilding Progr.
,
29
(
335
), pp.
166
170
.
22.
Birk
,
L.
,
2019
,
Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship Resistance and Propulsion
,
John Wiley & Sons
.
23.
ITTC
,
2002
.
Testing and Extrapolation Methods Resistance Uncertainty Analysis, Example for Resistance Test, ITTC
.
24.
ITTC
,
2011
.
Testing and Extrapolation Methods Register, ITTC
.
25.
Kitamura
,
F.
,
Ueno
,
M.
,
Fujiwara
,
T.
, and
Sogihara
,
N.
,
2017
, “
Estimation of Above Water Structural Parameters and Wind Loads on Ships
,”
Ships and Offshore Struct.
,
12
(
8
), pp.
1100
1108
.
26.
Munk
,
T.
,
2006
, “
Fuel Conservation Through Managing Hull Resistance
,”
Motorship Propulsion Conference
,
Copenhagen, Denmark
,
Apr. 26
.
27.
IMO
,
T. I.
,
2014
. “
Greenhouse Gas Study 2014, Executive Summary and Final Report
,”
International Maritime Organization
,
London
, p.
280
.
28.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
,
1989
, “
Multilayer Feedforward Networks Are Universal Approximators
,”
Neural Netw.
,
2
(
5
), pp.
359
366
.
29.
Chen
,
T.
, and
Chen
,
H.
,
1995
, “
Universal Approximation to Nonlinear Operators by Neural Networks With Arbitrary Activation Functions and Its Application to Dynamical Systems
,”
IEEE Trans. Neural Netw.
,
6
(
4
), pp.
911
917
.
30.
Finzi
,
M.
,
Stanton
,
S.
,
Izmailov
,
P.
, and
Wilson
,
A. G.
,
2020
, “
Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data
,”
International Conference on Machine Learning
,
Online
,
July 13–18
, PMLR, pp.
3165
3176
.
31.
Yeh
,
R. A.
,
Hu
,
Y.-T.
,
Hasegawa-Johnson
,
M.
, and
Schwing
,
A.
,
2022
, “
Equivariance Discovery by Learned Parameter-Sharing
,”
International Conference on Artificial Intelligence and Statistics
,
Online
,
Mar. 28–30
, PMLR, pp.
1527
1545
.
32.
Han
,
P.
,
Ellefsen
,
A. L.
,
Li
,
G.
,
Æsøy
,
V.
, and
Zhang
,
H.
,
2021
, “
Fault Prognostics Using LSTM Networks: application to marine diesel engine
,”
IEEE Sens. J.
,
21
(
22
), pp.
25986
25994
.
33.
PyTorch
,
2024
.
Pytorch Api Documentation
. https://github.com/pytorch/pytorch.
34.
IMO
,
2008
. “
Nitrogen Oxides (NOx)–Regulation 13
”. IMO MARPOL, p.
1
.
35.
Tran
,
T. A.
,
2020
, “
Effect of Ship Loading on Marine Diesel Engine Fuel Consumption for Bulk Carriers Based on the Fuzzy Clustering Method
,”
Ocean. Eng.
,
207
, p.
107383
.
36.
EU, 2023. Emsa thetis-mrv. https://mrv.emsa.europa.eu/#public/eumrv.
37.
Lundberg
,
S. M.
, and
Lee
,
S.-I.
,
2017
, “
A Unified Approach to Interpreting Model Predictions
,” Advances in Neural Information Processing Systems, 30.
You do not currently have access to this content.