Abstract

Offshore wind turbine blade installation using jack-up crane vessel is a challenging task. Wave- and wind-induced loads on the installation system can cause large relative motion between the blade root and the hub during the mating process. Currently, several numerical tools are used to analyze such critical global motion responses; however, the industry suffers from lack of experiments and full-scale measurements to validate the accuracy of these results. Consequently, a code-to-code comparison exercise becomes critical as it allows comparing different numerical tools for reliable prediction and verification of results. In the present article, a numerical model of the offshore wind turbine blade mating process using a jack-up crane vessel is developed in orcaflex, and a code-to-code comparison is performed against sima; both these tools are immensely used in the industry for modeling marine operations. Different comparisons are made between both the tools such as: (1) modal analyses of the jack-up vessel and the blade lifting gear, (2) time-domain analysis of the fully coupled installation vessel-crane-blade system, and (3) a comprehensive sensitivity study based on different seed numbers and simulation periods. The results of the study show a good agreement between both the tools with a deviation of less than 3% in terms of modal analysis and less than 5% variation in time-domain results. Further, the article provides modeling guidelines for the industry practitioners that heavily rely on both the tools for modeling marine operations.

References

1.
Verma
,
A. S.
,
Jiang
,
Z.
,
Ren
,
Z.
,
Gao
,
Z.
, and
Vedvik
,
N. P.
,
2019
, “
Response-Based Assessment of Operational Limits for Mating Blades on Monopile-Type Offshore Wind Turbines
,”
Energies
,
12
(
10
), p.
1867
.
2.
Li
,
L.
,
2016
, “
Dynamic Analysis of The Installation of Monopiles for Offshore Wind Turbines
.”
3.
Statista
,
2022
, “
Offshore Wind Energy Capacity Worldwide From 2009 to 2021
,” https://www.statista.com/statistics/476327/global-capacity-of-offshore-wind-energy, Accessed March 1, 2022.
4.
Jahani
,
K.
,
Langlois
,
R. G.
, and
Afagh
,
F. F.
,
2022
, “
Structural Dynamics of Offshore Wind Turbines: A Review
,”
Ocean. Eng.
,
251
, p.
111136
.
5.
Acero
,
W. G.
,
Li
,
L.
,
Gao
,
Z.
, and
Moan
,
T.
,
2016
, “
Methodology for Assessment of the Operational Limits and Operability of Marine Operations
,”
Ocean. Eng.
,
125
, pp.
308
327
.
6.
Guo
,
Y.
,
Wang
,
H.
, and
Lian
,
J.
,
2022
, “
Review of Integrated Installation Technologies for Offshore Wind Turbines: Current Progress and Future Development Trends
,”
Energy. Convers. Manage.
,
255
, p.
115319
.
7.
Yuan
,
B.
,
Li
,
Z.
,
Chen
,
W.
,
Zhao
,
J.
,
Lv
,
J.
,
Song
,
J.
, and
Cao
,
X.
,
2022
, “
Influence of Groundwater Depth on Pile–Soil Mechanical Properties and Fractal Characteristics Under Cyclic Loading
,”
Fractal Fractional
,
6
(
4
), p.
198
.
8.
Verma
,
A. S.
,
Gao
,
Z.
,
Jiang
,
Z.
,
Ren
,
Z.
, and
Vedvik
,
N. P.
,
2019
, “
Structural Safety Assessment of Marine Operations From a Long-Term Perspective: A Case Study of Offshore Wind Turbine Blade Installation
,”
International Conference on Offshore Mechanics and Arctic Engineering, Vol. 58783
,
Glasgow, UK
,
June 9–14
, American Society of Mechanical Engineers, p. V003T02A074.
9.
Ahn
,
D.
,
Shin
,
S.-C.
,
Kim
,
S.-Y.
,
Kharoufi
,
H.
, and
Kim
,
H.-C.
,
2017
, “
Comparative Evaluation of Different Offshore Wind Turbine Installation Vessels for Korean West–South Wind Farm
,”
Int. J. Naval Architect. Ocean Eng.
,
9
(
1
), pp.
45
54
.
10.
Jiang
,
Z.
,
2021
, “
Installation of Offshore Wind Turbines: a Technical Review
,”
Renewable. Sustainable. Energy. Rev.
,
139
, p.
110576
.
11.
Jiang
,
Z.
,
Gao
,
Z.
,
Ren
,
Z.
,
Li
,
Y.
, and
Duan
,
L.
,
2018
, “
A Parametric Study on the Final Blade Installation Process for Monopile Wind Turbines Under Rough Environmental Conditions
,”
Eng. Structures
,
172
, pp.
1042
1056
.
12.
Larsen
,
T. J.
, and
Hansen
,
A. M.
,
2007
, “
How 2 Hawc2, the User’s Manual
,”
target
,
2
(
2
).
13.
Verma
,
A. S.
,
Jiang
,
Z.
,
Vedvik
,
N. P.
,
Gao
,
Z.
, and
Ren
,
Z.
,
2019
, “
Impact Assessment of a Wind Turbine Blade Root During an Offshore Mating Process
,”
Eng. Structures
,
180
, pp.
205
222
.
14.
Jiang
,
Z.
,
2018
, “
The Impact of a Passive Tuned Mass Damper on Offshore Single-Blade Installation
,”
J. Wind Eng. Ind. Aerodynamics
,
176
, pp.
65
77
.
15.
Kuijken
,
L.
,
2015
,
Single Blade Installation for Large Wind Turbines in Extreme Wind Conditions: A Quasi-Steady Aeroelastic Study in High Wind Speeds under Different Inflow Angles
.
16.
Hibbitt
,
H.
,
Karlsson
,
B.
, and
Sorensen
,
P.
,
2016
,
Abaqus Analysis User's Manual, Version 2016, Dassault Systemes Simulia Corp, Providence, RI
.
17.
Ren
,
Z.
,
Jiang
,
Z.
,
Skjetne
,
R.
, and
Gao
,
Z.
,
2018
, “
Development and Application of a Simulator for Offshore Wind Turbine Blades Installation
,”
Ocean. Eng.
,
166
, pp.
380
395
.
18.
Wang
,
W.
, and
Bai
,
Y.
,
2010
, “
Investigation on Installation of Offshore Wind Turbines
,”
J. Marine Sci. Appl.
,
9
(
2
), pp.
175
180
.
19.
Matsson
,
J. E.
,
2021
,
An Introduction to ANSYS Fluent 2021
,
SDC Publications
,
Mission, KS, USA
.
20.
SINTEFOcean
,
2021
,
SINTEFOcean, 2021, “SIMA User Manual.”
21.
Zhao
,
Y.
,
Cheng
,
Z.
,
Sandvik
,
P. C.
,
Gao
,
Z.
, and
Moan
,
T.
,
2018
, “
An Integrated Dynamic Analysis Method for Simulating Installation of Single Blades for Wind Turbines
,”
Ocean. Eng.
,
152
, pp.
72
88
.
22.
Zhao
,
Y.
,
Cheng
,
Z.
,
Sandvik
,
P. C.
,
Gao
,
Z.
,
Moan
,
T.
, and
Van Buren
,
E.
,
2018
, “
Numerical Modeling and Analysis of the Dynamic Motion Response of an Offshore Wind Turbine Blade During Installation by a Jack-Up Crane Vessel
,”
Ocean. Eng.
,
165
, pp.
353
364
.
23.
Zhao
,
Y.
,
2019
,
“Numerical Modeling and Dynamic Analysis of Offshore Wind Turbine Blade Installation,”
NTNU, Department of Marine Technology
,
Trondheim, Norway
.
24.
Orcina
,
O. M.
,
2015
, “
Orcina Ltd.
,” Cambria, Ulverston.
25.
DNV
,
G.
,
2011
, “
Marine Operations, General
,” Offshore Standard DNV-OS-H101.
26.
Acero
,
W. I. G.
,
2016
, “
Assessment of Marine Operations for Offshore Wind Turbine Installation With Emphasis on Response-Based Operational Limits
,” Ph.d. thesis,
Norwegian University of Science and Technology (NTNU)
,
Trondheim
.
27.
Jonkman
,
B. J.
,
2006
,
“Turbsim User’s Guide,”
National Renewable Energy Lab (NREL), Golden, CO, Technical Report No. NREL/TP-500-39797.
.
28.
DNV, G.
,
2014
, “
Recommended Practice DNV-RP-C205: Environmental Conditions and Environmental Loads
,” Høvik, Norway.
29.
Bortolotti
,
P.
,
Tarres
,
H. C.
,
Dykes
,
K. L.
,
Merz
,
K.
,
Sethuraman
,
L.
,
Verelst
,
D.
, and
Zahle
,
F.
,
2019
,
“IEA Wind TCP Task 37: Systems Engineering in Wind Energy-WP2. 1 Reference Wind Turbines,”
National Renewable Energy Lab.(NREL), Golden, CO, USA, Technical Report No. NREL/TP-5000-73492.
30.
Bak
,
C.
,
Zahle
,
F.
,
Bitsche
,
R.
,
Kim
,
T.
,
Yde
,
A.
,
Henriksen
,
L. C.
,
Hansen
,
M. H.
, and
Natarajan
,
A.
,
2013
, “
Description of the DTU 10 MW Reference Wind Turbine
,” Progress Report Report-I-0092, DTU Wind Energy.
31.
OrcinaLtd
,
2021
,
“OrcaFlex User Manual Version 11.1b.”
32.
Viuff
,
T.
,
Xiang
,
X.
,
Leira
,
B. J.
, and
Øiseth
,
O.
,
2020
, “
Software-to-Software Comparison of End-Anchored Floating Bridge Global Analysis
,”
J. Bridge Eng.
,
25
(
5
), p.
14
.
33.
Chung
,
J.
, and
Hulbert
,
G.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
375
.
34.
Mollestad
,
E.
,
1983
,
“Techniques for Static and Dynamic Solution of Nonlinear Finite Element Problems,”
Division of Structural Mechanics, The Norwegian Institute of Technology
,
Trondheim, Norway
.
35.
Engseth
,
A. G.
,
1984
, “Finite Element Collapse Analysis of Tubular Steel Offshore Structures,” Norges Tekniske Hogskole, University of Trondheim, Report No. UR-85-46.
You do not currently have access to this content.