Abstract

This work focuses on examining the dynamic behavior of large floating offshore wind turbine (FOWT) exposed to extreme (wind and wave with 50-year return period) and accidental (mooring line breakage) loadings. The FOWT considered is 15 MW reference turbine supported on semi-submersible platform stationed using catenary moorings. As the mooring configuration greatly affects the response of FOWT, two different mooring configurations namely non-redundant (three-line) and redundant (six-line) systems were studied and compared. The coupled multi-body dynamic system was solved using Openfast. When simulating the mooring line failure, both the operating and extreme loading conditions were considered. Failure of one mooring was considered at a time. The response of the coupled system due to breakage of the mooring indicates high displacements in surge and sway directions in comparison to the intact system especially for the non-redundant mooring system. Furthermore, change in platform yaw angle and increased tension in the other intact mooring lines were observed. The findings from this study will be helpful in accidental limit state design and preventing failure of similar large FOWT systems. In addition, insights into using non-redundant and redundant mooring configurations for such large structures with respect to extreme and accidental loadings were also discussed.

References

1.
Lee
,
J.
, and
Zhao
,
F.
,
2021
, “
GWEC| Global Wind Report 2021
,” Technical Report.
Global Wind Energy Council
.
2.
Cavazzi
,
S.
, and
Dutton
,
A.
,
2016
, “
An Offshore Wind Energy Geographic Information System (OWE-GIS) for Assessment of the UK’s Offshore Wind Energy Potential
,”
Renewable Energy
,
87
, pp.
212
228
.
3.
Jonkman
,
J. M.
, and
Matha
,
D.
,
2011
, “
Dynamics of Offshore Floating Wind Turbines–Analysis of Three Concepts
,”
Wind Energy
,
14
(
4
), pp.
557
569
.
4.
Viselli
,
A. M.
,
Goupee
,
A. J.
,
Dagher
,
H. J.
, and
Allen
,
C. K.
,
2016
, “
Design and Model Confirmation of the Intermediate Scale VolturnUS Floating Wind Turbine Subjected to Its Extreme Design Conditions Offshore Maine
,”
Wind Energy
,
19
(
6
), pp.
1161
1177
.
5.
Niranjan
,
R.
, and
Ramisetti
,
S. B.
,
2022
, “
Insights From Detailed Numerical Investigation of 15 MW Offshore Semi-Submersible Wind Turbine Using Aero-Hydro-Servo-Elastic Code
,”
Ocean Eng.
,
251
, p.
111024
.
6.
Bae
,
Y.
,
Kim
,
M.
, and
Kim
,
H.
,
2017
, “
Performance Changes of a Floating Offshore Wind Turbine With Broken Mooring Line
,”
Renewable Energy
,
101
, pp.
364
375
.
7.
Yang
,
R.-Y.
,
Chuang
,
T.-C.
,
Zhao
,
C.
, and
Johanning
,
L.
,
2022
, “
Dynamic Response of an Offshore Floating Wind Turbine at Accidental Limit States-Mooring Failure Event
,”
Appl. Sci.
,
12
(
3
), p.
1525
.
8.
Piscopo
,
V.
, and
Scamardella
,
A.
,
2021
, “
Comparative Study Among Non-Redundant and Redundant Stationkeeping Systems for Floating Offshore Wind Turbines on Intermediate Water Depth
,”
Ocean Eng.
,
241
, p.
110047
.
9.
Li
,
Y.
,
Zhu
,
Q.
,
Liu
,
L.
, and
Tang
,
Y.
,
2018
, “
Transient Response of a SPAR-Type Floating Offshore Wind Turbine With Fractured Mooring Lines
,”
Renewable Energy
,
122
, pp.
576
588
.
10.
Wu
,
H.
,
Zhao
,
Y.
,
He
,
Y.
,
Shao
,
Y.
,
Mao
,
W.
,
Han
,
Z.
,
Huang
,
C.
,
Gu
,
X.
, and
Jiang
,
Z.
,
2021
, “
Transient Response of a TLP-Type Floating Offshore Wind Turbine Under Tendon Failure Conditions
,”
Ocean Eng.
,
220
, p.
108486
.
11.
Yang
,
Y.
,
Bashir
,
M.
,
Li
,
C.
, and
Wang
,
J.
,
2021
, “
Investigation on Mooring Breakage Effects of a 5 MW Barge-Type Floating Offshore Wind Turbine Using F2A
,”
Ocean Eng.
,
233
, p.
108887
.
12.
Gaertner
,
E.
,
Rinker
,
J.
,
Sethuraman
,
L.
,
Zahle
,
F.
,
Anderson
,
B.
,
Barter
,
G. E.
,
Abbas
,
N. J.
, et al.,
2020
, “
IEA Wind TCP Task 37: Definition of the IEA 15-Megawatt Offshore Reference Wind Turbine
,”
National Renewable Energy Laboratory (NREL)
,
Golden, CO
, Technical Report NREL/TP-5000-75698.
13.
Allen
,
C.
,
Viscelli
,
A.
,
Dagher
,
H.
,
Goupee
,
A.
,
Gaertner
,
E.
,
Abbas
,
N.
,
Hall
,
M.
, and
Barter
,
G.
,
2020
, “
Definition of the UMaine VolturnUS-S Reference Platform Developed for the IEA Wind 15-Megawatt Offshore Reference Wind Turbine
,”
National Renewable Energy Laboratory (NREL)
,
Golden, CO
, Technical Report NREL/TP-5000-76773.
14.
NREL
,
2021
, “
OpenFAST
,” https://github.com/OpenFAST/openfast, Accessed August 4, 2021.
15.
Jonkman
,
J.
,
2013
, “
The New Modularization Framework for the FAST Wind Turbine CAE Tool
,”
National Renewable Energy Laboratory (NREL)
,
Golden, CO
, Technical Report NREL/JA-5000-57228.
16.
Kane
,
T. R.
, and
Levinson
,
D. A.
,
1985
,
Dynamics, Theory and Applications
,
McGraw-Hill
,
New York
.
17.
Jonkman
,
J.
,
2007
, “
Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine
,”
National Renewable Energy Laboratory (NREL)
,
Golden, CO
, Technical Report NREL/TP-500-41958.
18.
NREL
,
2021
, “
NREL’s Reference OpenSource Controller (ROSCO) for Wind Turbine Applications
,” Version 2.3.0.
19.
Abbas
,
N. J.
,
Zalkind
,
D. S.
,
Pao
,
L.
, and
Wright
,
A.
,
2022
, “
A Reference Open-Source Controller for Fixed and Floating Offshore Wind Turbines
,”
Wind Energy Sci.
,
7
(
1
), pp.
53
73
.
20.
ANSYS
,
2020
, “
ANSYS AQWA
,” User Manual 2020.
21.
Hall
,
M.
, and
Goupee
,
A.
,
2015
, “
Validation of a Lumped-Mass Mooring Line Model With DeepCwind Semisubmersible Model Test Data
,”
Ocean Eng.
,
104
, pp.
590
603
.
22.
IEC 61400-1
,
2019
, “
Wind Turbine Generator Systems, Part 1 – Safety Requirements, 4th ed.
23.
IEC 61400-3-1
,
2019
, “
Wind Turbine Generator Systems, Part 3-1 – Design Requirements for Fixed Offshore Wind Turbines, 1st ed.
”.
24.
IEC 61400-3-2
,
2019
, “
Wind Turbine Generator Systems, Part 3-2 – Design Requirements for Floating Offshore Wind Turbines, 1st ed.
”.
25.
McCormick
,
M. E.
,
2009
,
Ocean Engineering Mechanics With Applications
,
Cambridge University Press
,
New York
.
26.
Campanile
,
A.
,
Piscopo
,
V.
, and
Scamardella
,
A.
,
2018
, “
Mooring Design and Selection for Floating Offshore Wind Turbines on Intermediate and Deep Water Depths
,”
Ocean Eng.
,
148
, pp.
349
360
.
27.
Leimeister
,
M.
,
Kolios
,
A.
,
Collu
,
M.
, and
Thomas
,
P.
,
2020
, “
Design Optimization of the OC3 Phase IV Floating Spar-Buoy, Based on Global Limit States
,”
Ocean Eng.
,
202
, p.
107186
.
28.
DNV-ST-0119
,
2021
, “
Floating Wind Turbine Structures
.”
29.
Xu
,
K.
,
Larsen
,
K.
,
Shao
,
Y.
,
Zhang
,
M.
,
Gao
,
Z.
, and
Moan
,
T.
,
2021
, “
Design and Comparative Analysis of Alternative Mooring Systems for Floating Wind Turbines in Shallow Water With Emphasis on Ultimate Limit State Design
,”
Ocean Eng.
,
219
, p.
108377
.
You do not currently have access to this content.