Abstract

Typhoon is a disastrous weather system, which usually induces strong waves, currents, and surges along the coastal area, and causes severe hydrodynamic loads on the elevated pile cap foundation, which is widely used to support the sea-crossing bridge. Estimating the hydrodynamic loads under typhoons is essential to ensure the bridge's safety. This paper develops an environmental contour-based framework that can estimate the extreme hydrodynamic loads induced by typhoons while considering the correlation among environmental conditions. The elevated pile cap foundation of the Xihoumen Rail-cum-road Bridge was used to illustrate the framework. The SWAN + ADCIRC model was employed to simulate the environmental conditions under typhoons. The pair-copulas were adopted to construct joint probability distributions, and the environmental contours with a given return period were then established by the inverse first-order reliability method. Given the hydrodynamic model and short-term peak value of the structural response, the AK-LHS method was then used to find the maximum hydrodynamic loads based on the environmental contours. The environmental contour constructing methods and selection methods of short-term peak values were compared and discussed. The main findings include: (1) ignoring correlations of the environmental conditions overestimates the extreme hydrodynamic loads and results in a conservative design; (2) the estimation of extreme hydrodynamic loads is affected by the selection and fitting of short-term peak values significantly; and (3) the extreme hydrodynamic loads estimated by either Rosenblatt transformation or Nataf transformation shows similar results.

References

1.
Wei
,
K.
,
Imani
,
H.
, and
Qin
,
S.
,
2021
, “
Parametric Wave Spectrum Model for Typhoon-Generated Waves Based on Field Measurements in Nearshore Strait Water
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
5
), p.
051201
.
2.
Shen
,
Z.
, and
Wei
,
K.
,
2021
, “
Stochastic Model of Tropical Cyclones Along China Coast Including the Effects of Spatial Heterogeneity and Ocean Feedback
,”
Reliab. Eng. Syst. Saf.
,
216
, p.
108000
.
3.
Ti
,
Z.
,
Wei
,
K.
,
Qin
,
S.
,
Mei
,
D.
, and
Li
,
Y.
,
2018
, “
Assessment of Random Wave Pressure on the Construction Cofferdam for Sea-Crossing Bridges Under Tropical Cyclone
,”
Ocean Eng.
,
160
, pp.
335
345
.
4.
Pei
,
M.
,
Tang
,
B.
,
Xu
,
C.
, and
Wang
,
X.
,
2021
, Summarize of Detail Design for Pelješac Bridge Project in Croatia.
5.
Diana
,
G.
,
Yamasaki
,
Y.
,
Larsen
,
A.
,
Rocchi
,
D.
,
Giappino
,
S.
,
Argentini
,
T.
,
Pagani
,
A.
,
Villani
,
M.
,
Somaschini
,
C.
, and
Portentoso
,
M.
,
2013
, “
Construction Stages of the Long Span Suspension Izmit Bay Bridge: Wind Tunnel Test Assessment
,”
J. Wind Eng. Ind. Aerodyn.
,
123
(
Pt.B
), pp.
300
310
.
6.
Wei
,
K.
,
Zhou
,
C.
,
Zhang
,
M.
,
Ti
,
Z.
, and
Qin
,
S.
,
2020
, “
Review of the Hydrodynamic Challenges in the Design of Elevated Pile Cap Foundations for Sea-Crossing Bridges
,”
ABEN
,
1
(
1
), p.
21
.
7.
Wei
,
K.
,
Shen
,
Z.
,
Ti
,
Z.
, and
Qin
,
S.
,
2021
, “
Trivariate Joint Probability Model of Typhoon-Induced Wind, Wave and Their Time Lag Based on the Numerical Simulation of Historical Typhoons
,”
Stoch. Environ. Res. Risk Assess.
,
35
(
2
), pp.
325
344
.
8.
Booij
,
N.
,
Ris
,
R.
, and
Holthuijsen
,
L.
,
1999
, “
A Third-Generation Wave Model for Coastal Regions—1. Model Description and Validation
,”
J. Geophys. Res. Oceans
,
104
(
C4
), pp.
7649
7666
.
9.
Dietrich
,
J. C.
,
Zijlema
,
M.
,
Westerink
,
J. J.
,
Holthuijsen
,
L. H.
,
Dawson
,
C.
,
Luettich
,
R. A.
, Jr.
,
Jensen
,
R. E.
,
Smith
,
J. M.
,
Stelling
,
G. S.
, and
Stone
,
G. W.
,
2011
, “
Modeling Hurricane Waves and Storm Surge Using Integrally-Coupled, Scalable Computations
,”
Coast. Eng.
,
58
(
1
), pp.
45
65
.
10.
Sebastian
,
A.
,
Proft
,
J.
,
Dietrich
,
J. C.
,
Du
,
W.
,
Bedient
,
P. B.
, and
Dawson
,
C. N.
,
2014
, “
Characterizing Hurricane Storm Surge Behavior in Galveston Bay Using the SWAN + ADCIRC Model
,”
Coast. Eng.
,
88
, pp.
171
181
.
11.
Hong
,
J.
,
Wei
,
K.
,
Shen
,
Z.
,
Xu
,
B.
, and
Qin
,
S.
,
2021
, “
Experimental Study of Breaking Wave Loads on Elevated Pile Cap With Rectangular Cross-Section
,”
Ocean Eng.
,
227
, p.
108878
.
12.
Liu
,
P.
,
Shang
,
D.
,
Liu
,
Q.
,
Yi
,
Z.
, and
Wei
,
K.
,
2021
, “
Kriging Model for Reliability Analysis of the Offshore Steel Trestle Subjected to Wave and Current Loads
,”
JMSE
,
10
(
1
), p.
25
.
13.
Shen
,
Z.
,
Wei
,
K.
,
Deng
,
P.
,
Zhong
,
X.
, and
Qin
,
S.
,
2020
, “
Probabilistic Modeling of Horizontal Wave-in-Deck Loads on a Square Concrete Deck
,”
ASME J. Offshore Mech. Arct. Eng.
,
142
(
5
), p.
051702
.
14.
Wei
,
K.
,
Liao
,
X.
, and
Qin
,
S.
,
2022
, “
Forecasting Current Velocity and Profile in a Strait Water Using Warped Gaussian Process
,”
ASME J. Offshore Mech. Arct. Eng.
,
144
(
3
), p.
031201
.
15.
Wei
,
K.
,
Qiu
,
F.
, and
Qin
,
S.
,
2022
, “
Experimental and Numerical Investigation Into Effect of Skirted Caisson on Local Scour Around the Large-Scale Bridge Foundation
,”
Ocean Eng.
,
250
, p.
111052
.
16.
Wei
,
K.
,
Zhang
,
F.
,
Zhang
,
M.
,
Mei
,
D.
, and
Qin
,
S.
,
2022
, “
Influence of the Sag-to-Span Ratio on the Dynamic Response of a Long-Span Bridge Suspended From Floating Towers Under Wave and Wind Loads
,”
Sh. Offshore Struct.
,
17
(
5
), pp.
1023
1041
.
17.
Yuliang
,
Z.
,
Dahui
,
L. I. U.
, and
Sheng
,
D.
,
2020
, “
Estimating Design Loads With Environmental Contour Approach Using Copulas for an Offshore Jacket Platform
,”
J. Ocean Univ. China
,
19
(
5
), pp.
1029
1041
.
18.
API RP 2A-LRFD
,
2019
, “Planning, Designing and Constructing for Fixed Offshore Platforms Load and Resistance Factor Design,”
American Petroleum Institute
,
Washington, D.C.
, pp.
26
43
.
19.
Qiao
,
C.
, and
Myers
,
A. T.
,
2021
, “
A New IFORM-Rosenblatt Framework for Calculation of Environmental Contours
,”
Ocean Eng.
,
238
, p.
109622
.
20.
Chai
,
W.
, and
Leira
,
B. J.
,
2018
, “
Environmental Contours Based on Inverse SORM
,”
Mar. Struct.
,
60
, pp.
34
51
.
21.
Mackay
,
E.
, and
Haselsteiner
,
A. F.
,
2021
, “
Marginal and Total Exceedance Probabilities of Environmental Contours
,”
Mar. Struct.
,
75
, p.
102863
.
22.
Vanem
,
E.
,
Guo
,
B.
,
Ross
,
E.
, and
Jonathan
,
P.
,
2020
, “
Comparing Different Contour Methods With Response-Based Methods for Extreme Ship Response Analysis
,”
Mar. Struct.
,
69
, p.
102680
.
23.
Li
,
Q.
,
Gao
,
Z.
, and
Moan
,
T.
,
2016
, “
Modified Environmental Contour Method for Predicting Long-Term Extreme Responses of Bottom-Fixed Offshore Wind Turbines
,”
Mar. Struct.
,
48
(
Jul
), pp.
15
32
.
24.
Valamanesh
,
V.
,
Myers
,
A. T.
, and
Arwade
,
S. R.
,
2015
, “
Multivariate Analysis of Extreme Metocean Conditions for Offshore Wind Turbines
,”
Struct. Saf.
,
55
, pp.
60
69
.
25.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.
26.
Gong
,
J.
,
Jia
,
X.
,
Zhuge
,
W.
,
Guo
,
W.
, and
Lee
,
D.-Y.
,
2020
, “
Assessment of a Parametric Tropical Cyclone Model for Typhoon Wind Modeling in the Yellow Sea
,”
J. Coast. Res.
,
99
(
sp1
), pp.
67
73
.
27.
Murty
,
P. L. N.
,
Srinivas
,
K. S.
,
Rao
,
E. P. R.
,
Bhaskaran
,
P. K.
,
Shenoi
,
S. S. C.
, and
Padmanabham
,
J.
,
2020
, “
Improved Cyclonic Wind Fields Over the Bay of Bengal and Their Application in Storm Surge and Wave Computations
,”
Appl. Ocean Res.
,
95
, p.
102048
.
28.
Sun
,
Z.
,
Wang
,
C.
,
Zhong
,
S.
, and
Ji
,
H.
,
2019
, “
Numerical Simulation of Storm Surge Coupled With Wave in Zhoushan Fishing Port
,”
Mar. Sci. Bull.
,
38
(
2
), pp.
150
158
.
29.
Ying
,
W.
,
Zheng
,
Q.
,
Zhu
,
C.
,
Zhu
,
Y.
,
Che
,
Z.
,
Chu
,
D.
, and
Zhang
,
J.
,
2017
, “
Numerical Simulation of ‘CHAN-HOM’ Typhoon Waves Using SWAN Model
,”
Mar. Sci.
,
41
(
4
), pp.
108
117
.
30.
Zhou
,
T.
,
Ya
,
T.
, and
Ao
,
C.
,
2018
, “
Integrated Model for Astronomic Tide and Storm Surge Induced by Typhoon for Ningbo Coast
,”
The 28th International Ocean and Polar Engineering Conference
,
Sapporo, Japan
,
June 10–15
,
Paper No. ISOPE-I-18-265
.
31.
Winterstein
,
S.
,
Ude
,
T. C.
,
Cornell
,
C. A.
,
Bjerager
,
P.
, and
Haver
,
S.
,
1993
, “
Environmental Parameters for Extreme Response: Inverse FORM with Omission Factors
,”
Proceedings of International Conference on Structural Safety and Reliability (ICOSSAR93)
,
Innsbruck, Austria
,
Aug. 9–13
, pp.
551
557
.
32.
Haver
,
S.
, and
Winterstein
,
S. R.
,
2008
, “
Environmental Contour Lines: A Method for Estimating Long Term Extremes by a Short Term Analysis
,”
SNAME Maritime Convention
,
Houston, TX
,
Oct. 17
, p.
D011S002R005
.
33.
Zhao
,
Y.
,
Liao
,
Z.
, and
Dong
,
S.
,
2021
, “
Estimation of Characteristic Extreme Response for Mooring System in a Complex Ocean Environment
,”
Ocean Eng.
,
225
, p.
108809
.
34.
Montes-Iturrizaga
,
R.
, and
Heredia-Zavoni
,
E.
,
2016
, “
Reliability Analysis of Mooring Lines Using Copulas to Model Statistical Dependence of Environmental Variables
,”
Appl. Ocean Res.
,
59
, pp.
564
576
.
35.
Fang
,
C.
,
Xu
,
Y.-L.
, and
Li
,
Y.
,
2022
, “
Optimized C-Vine Copula and Environmental Contour of Joint Wind-Wave Environment for Sea-Crossing Bridges
,”
J. Wind Eng. Ind. Aerodyn.
,
225
, p.
104989
.
36.
Silva-González
,
F.
,
Heredia-Zavoni
,
E.
, and
Montes-Iturrizaga
,
R.
,
2013
, “
Development of Environmental Contours Using Nataf Distribution Model
,”
Ocean Eng.
,
58
, pp.
27
34
.
37.
Molin
,
B.
,
2012
, Hydrodynamique Des Structures Offshore.
38.
DNV-OS-J101
. “
Design of Offshore Wind Turbine Structures
,”
Det Norske Veritas
, p.
2017
.
39.
Stanisic
,
D.
,
Efthymiou
,
M.
,
Kimiaei
,
M.
, and
Zhao
,
W.
,
2018
, “
Design Loads and Long Term Distribution of Mooring Line Response of a Large Weathervaning Vessel in a Tropical Cyclone Environment
,”
Mar. Struct.
,
61
, pp.
361
380
.
40.
Xu
,
S.
,
Ji
,
C.
, and
Guedes Soares
,
C.
,
2019
, “
Estimation of Short-Term Extreme Responses of a Semi-Submersible Moored by Two Hybrid Mooring Systems
,”
Ocean Eng.
,
190
, p.
106388
.
41.
Olsson
,
A.
,
Sandberg
,
G.
, and
Dahlblom
,
O.
,
2003
, “
On Latin Hypercube Sampling for Structural Reliability Analysis
,”
Struct. Saf.
,
25
(
1
), pp.
47
68
.
42.
Couckuyt
,
I.
,
Dhaene
,
T.
, and
Demeester
,
P.
,
2014
, “
Oodace Toolbox: A Flexible Object-Oriented Kriging Implementation
,”
J. Mach. Learn. Res.
,
15
(
1
), pp.
3183
3186
.
43.
Wei
,
K.
,
Myers
,
A. T.
, and
Arwade
,
S. R.
,
2017
, “
Dynamic Effects in the Response of Offshore Wind Turbines Supported by Jackets Under Wave Loading
,”
Eng. Struct.
,
142
, pp.
36
45
.
44.
Wei
,
K.
,
Arwade
,
S. R.
,
Myers
,
A. T.
,
Valamanesh
,
V.
, and
Pang
,
W.
,
2017
, “
Effect of Wind and Wave Directionality on the Structural Performance of Non-Operational Offshore Wind Turbines Supported by Jackets During Hurricanes
,”
Wind Energy
,
20
(
2
), pp.
289
303
.
You do not currently have access to this content.