Abstract

Diffraction and refraction of nonlinear shallow water waves due to uneven bathymetry are studied by use of the Green–Naghdi (GN) equations in three dimensions. A numerical wave tank consisting of deep, transitional, and shallow regions is created. Various forms of three-dimensional bathymetry, consisting of ramps with nonuniform profiles and large slopes, are used to connect the deep-water side of the tank to the shallow water shelf. A wavemaker is placed at the upwave side of the domain, capable of generating solitary and cnoidal waves of the GN equations. A numerical wave absorber is located downwave of the domain to minimize the wave reflection back into the domain. The system of equations is solved numerically in time domain by use of a second-order finite-difference approach for spatial discretization, and in a boundary-fitted coordinate system, and by use of the modified Euler method for time marching. Results include solitary and cnoidal wave surface elevation and particle velocities and are compared with the existing solutions where possible. Overall, very good agreement is observed. Discussion is provided on the nonlinearity and dispersion effects on the wave diffraction and refraction by the various forms of the ramps, as well as on the performance of the GN equations in solving these problems.

References

1.
Boussinesq
,
J.
,
1871
, “
Théorie de l’intumescence liquide appelée onde solitaire ou de translation
,”
Comptes Rendus de l’Académie des Sci.
,
72
, pp.
755
759
.
2.
Rayleigh
,
L.
,
1876
, “
On Waves
,”
Philos. Mag.
,
1
(
4
), pp.
257
279
.
3.
Korteweg
,
D.
, and
de Vries
,
G.
,
1895
, “
On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves
,”
Philos. Mag.
,
39
(
5
), pp.
422
443
.
4.
Laitone
,
E.
,
1960
, “
The Second Approximation to Cnoidal and Solitary Waves
,”
J. Fluid Mech.
,
9
(
3
), pp.
430
444
.
5.
Madsen
,
O. S.
, and
Mei
,
C. C.
,
1969
, “
The Transformation of a Solitary Wave Over an Uneven Bottom
,”
J. Fluid Mech.
,
39
(
4
), pp.
781
791
.
6.
Grimshaw
,
R.
,
1971
, “
The Solitary Wave in Water of Variable Depth. Part 2
,”
J. Fluid Mech.
,
46
(
3
), pp.
611
622
.
7.
Fenton
,
J.
,
1972
, “
A Ninth-Order Solution for the Solitary Wave
,”
J. Fluid Mech.
,
53
(
2
), pp.
257
271
.
8.
Wu
,
T.
,
1981
, “
Long Waves in Ocean and Coastal Waters
,”
J. Eng. Mech. Div.
,
107
(
3
), pp.
501
522
.
9.
Liu
,
P. L.-F.
, and
Losada
,
I. J.
,
2002
, “
Wave Propagation Modeling in Coastal Engineering
,”
J. Hydraulic Res.
,
40
(
3
), pp.
229
240
.
10.
Choi
,
D. Y.
, and
Wu
,
C. H.
,
2006
, “
A New Efficient 3D Non-Hydrostatic Free-Surface Flow Model for Simulating Water Wave Motions
,”
Ocean Eng.
,
33
(
5–6
), pp.
587
609
.
11.
Zhu
,
S.-P.
, and
Harun
,
F. N.
,
2009
, “
An Analytical Solution for Long Wave Refraction Over a Circular Hump
,”
J. Appl. Math. Comput.
,
30
(
1
), pp.
315
333
.
12.
Young
,
C.-C.
,
Wu
,
C. H.
,
Liu
,
W.-C.
, and
Kuo
,
J.-T.
,
2009
, “
A Higher-Order Non-Hydrostatic σ Model for Simulating Non-Linear Refraction–Diffraction of Water Waves
,”
Coastal Eng.
,
56
(
9
), pp.
919
930
.
13.
Engsig-Karup
,
A. P.
,
Bingham
,
H. B.
, and
Lindberg
,
O.
,
2009
, “
An Efficient Flexible-Order Model for 3D Nonlinear Water Waves
,”
J. Comput. Phys.
,
228
(
6
), pp.
2100
2118
.
14.
Yamazaki
,
Y.
,
Kowalik
,
Z.
, and
Cheung
,
K. F.
,
2009
, “
Depth-Integrated, Non-Hydrostatic Model for Wave Breaking and Run-Up
,”
Int. J. Numer. Methods Fluids
,
61
(
5
), pp.
473
497
.
15.
Roeber
,
V.
,
Cheung
,
K. F.
, and
Kobayashi
,
M. H.
,
2010
, “
Shock-Capturing Boussinesq-Type Model for Nearshore Wave Processes
,”
Coastal Eng.
,
57
(
4
), pp.
407
423
.
16.
Ma
,
G.
,
Shi
,
F.
, and
Kirby
,
J. T.
,
2012
, “
Shock-Capturing Non-Hydrostatic Model for Fully Dispersive Surface Wave Processes
,”
Ocean Model.
,
43
, pp.
22
35
.
17.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1974
, “
On the Theory of Water Waves
,”
Proc. R. Soc. Lond. Ser. A Math. Phys. Sci.
,
338
(
1612
), pp.
43
55
.
18.
Shields
,
J. J.
, and
Webster
,
W. C.
,
1988
, “
On Direct Methods in Water-Wave Theory
,”
J. Fluid Mech.
,
197
, pp.
171
199
.
19.
Bonneton
,
P.
,
Barthélemy
,
E.
,
Chazel
,
F.
,
Cienfuegos
,
R.
,
Lannes
,
D.
,
Marche
,
F.
, and
Tissier
,
M.
,
2011
, “
Recent Advances in Serre–Green–Naghdi Modelling for Wave Transformation, Breaking and Runup Processes
,”
Eur. J. Mech.-B/Fluids
,
30
(
6
), pp.
589
597
.
20.
Ertekin
,
R. C.
,
Hayatdavoodi
,
M.
, and
Kim
,
J. W.
,
2014
, “
On Some Solitary and Cnoidal Wave Diffraction Solutions of the Green–Naghdi Equations
,”
Appl. Ocean Res.
,
47
, pp.
125
137
.
21.
Zhao
,
B. B.
,
Duan
,
W. Y.
,
Ertekin
,
R. C.
, and
Hayatdavoodi
,
M.
,
2015
, “
High-Level Green–Naghdi Wave Models for Nonlinear Wave Transformation in Three Dimensions
,”
J. Ocean Eng. Marine Energy
,
1
(
2
), pp.
121
132
.
22.
Zhang
,
Y.
,
Kennedy
,
A. B.
,
Tomiczek
,
T.
,
Donahue
,
A.
, and
Westerink
,
J. J.
,
2016
, “
Validation of Boussinesq–Green–Naghdi Modeling for Surf Zone Hydrodynamics
,”
Ocean Eng.
,
111
, pp.
299
309
.
23.
Zhao
,
B. B.
,
Ertekin
,
R. C.
,
Duan
,
W. Y.
, and
Hayatdavoodi
,
M. H.
,
2014
, “
On the Steady Solitary-Wave Solution of the Green–Naghdi Equations of Different Levels
,”
Wave Motion
,
51
(
8
), pp.
1382
1395
.
24.
Webster
,
W. C.
, and
Zhao
,
B. B.
,
2018
, “
The Development of a High-Accuracy, Broadband, Green–Naghdi Model for Steep, Deep-Water Ocean Waves
,”
J. Ocean Eng. Marine Energy
,
4
(
4
), pp.
273
291
.
25.
Zhao
,
B. B.
,
Zhang
,
T. Y.
,
Wang
,
Z.
,
Duan
,
W. Y.
,
Ertekin
,
R. C.
, and
Hayatdavoodi
,
M.
,
2019
, “
Application of Three-Dimensional IGN-2 Equations to Wave Diffraction Problems
,”
J. Ocean Eng. Marine Energy
,
5
(
4
), pp.
351
363
.
26.
Zhao
,
B. B.
,
Wang
,
Z.
,
Duan
,
W.
,
Ertekin
,
R. C.
,
Hayatdavoodi
,
M.
, and
Zhang
,
T.
,
2020
, “
Experimental and Numerical Studies on Internal Solitary Waves With a Free Surface
,”
J. Fluid Mech.
,
899
, p.
A17
.
27.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1976
, “
A Derivation of Equations for Wave Propagation in Water of Variable Depth”
,”
J. Fluid Mech.
,
78
(
10
), pp.
237
246
.
28.
Ertekin
,
R. C.
,
1984
, “Soliton Generation by Moving Disturbances in Shallow Water: Theory, Computation and Experiment,” PhD thesis, University of California at Berkeley, Berkeley, CA, May, v+352 pp.
29.
Ertekin
,
R. C.
,
Webster
,
W. C.
, and
Wehausen
,
J. V.
,
1986
, “
Waves Caused by a Moving Disturbance in a Shallow Channel of Finite Width
,”
J. Fluid Mech.
,
169
(
7
), pp.
275
292
.
30.
Hayatdavoodi
,
M.
, and
Ertekin
,
R. C.
,
2015
, “
Wave Forces on a Submerged Horizontal Plate. Part I: Theory and Modelling
,”
J. Fluids Struct.
,
54
, pp.
566
579
.
31.
Ertekin
,
R. C.
, and
Becker
,
J. M.
,
1998
, “
Nonlinear Diffraction of Waves by a Submerged Shelf in Shallow Water
,”
ASME J. Offshore Mech. Arct. Eng.
,
120
(4), pp.
212
220
.
32.
Orlanski
,
I.
,
1976
, “
A Simple Boundary Condition for Unbounded Hyperbolic Flows
,”
J. Comput. Phys.
,
21
(
3
), pp.
251
269
.
33.
Ertekin
,
R. C.
, and
Sundararaghavan
,
H.
,
2003
, “
Refraction and Diffraction of Nonlinear Waves in Coastal Waters by the Level I Green-Naghdi Equations
,”
Proceedings of the 22nd International Conference on Offshore Mechanics and Arctic Engineering, OMAE’03
,
Cancun, Mexico
,
June 8–13
, ASME, p.
10
.
34.
Hayatdavoodi
,
M.
,
Neill
,
D. R.
, and
Ertekin
,
R. C.
,
2018
, “
Diffraction of Cnoidal Waves by Vertical Cylinders in Shallow Water
,”
Theor. Comput. Fluid Dyn.
,
32
(
5
), pp.
561
591
.
35.
Schember
,
H. R.
,
1982
, “A New Model for Three-Dimensional Nonlinear Dispersive Long Waves,” PhD thesis, California Institute of Technology, Pasadena, CA.
36.
Ertekin
,
R. C.
, and
Wehausen
,
J. V.
,
1987
, “
Some Soliton Calculations
,”
Proceedings of the 16th Symposium on Naval Hydrodynamics
,
Berkeley
,
W. C. Webster
, ed.,
July 13–18
,
National Academy Press
,
Washington, DC
, pp.
167
184
.
37.
Hayatdavoodi
,
M.
, and
Ertekin
,
R. C.
,
2015
, “
Wave Forces on a Submerged Horizontal Plate. Part II: Solitary and Cnoidal Waves
,”
J. Fluids Struct.
,
54
, pp.
580
596
.
38.
Hayatdavoodi
,
M.
, and
Ertekin
,
R. C.
,
2015
, “
Nonlinear Wave Loads on a Submerged Deck by the Green–Naghdi Equations
,”
ASME J. Offshore Mech. Arct. Eng.
,
137
(
1
), p.
011102
.
39.
Hayatdavoodi
,
M.
,
Treichel
,
K.
, and
Ertekin
,
R. C.
,
2019
, “
Parametric Study of Nonlinear Wave Loads on Submerged Decks in Shallow Water
,”
J. Fluids Struct.
,
86
, pp.
266
289
.
40.
Kostikov
,
V. K.
,
Hayatdavoodi
,
M.
, and
Ertekin
,
R. C.
,
2021
, “
Drift of Elastic Floating Ice Sheets by Waves and Current, Part I: Single Sheet
,”
Proc. R. Soc. A
,
477
(
2254
), p.
20210449
.
41.
Ursell
,
F.
,
1953
, “
The Long-Wave Paradox in the Theory of Gravity Waves
,”
Math. Proc. Cambridge Philos. Soc.
,
49
(
4
), pp.
685
694
.
42.
Dhanak
,
M. R.
, and
Xiros
,
N. I.
,
2016
,
Springer Handbook of Ocean Engineering
,
Springer
,
Cham
.
43.
Johnson
,
R. S.
,
1972
, “
Some Numerical Solutions of a Variable-Coefficient Korteweg–de Vries Equation (With Applications to Solitary Wave Development on a Shelf)
,”
J. Fluid Mech.
,
54
(
6
), pp.
81
91
.
44.
Johnson
,
R. S.
,
1973
, “
On the Development of a Solitary Wave Moving Over an Uneven Bottom
,”
Math. Proc. Cambridge Philos. Soc.
,
73
(
1
), pp.
183
203
.
You do not currently have access to this content.