Abstract

The dynamic performance prediction of floating offshore wind turbines (FOWTs) is a challenging task, as the existing theories might not be fully reliable for FOWTs due to the high nonlinearities and coupling effects. The artificial intelligent (AI) method gives a promising solution for this issue, and Chen and Hu proposed a novel AI-based method, named SADA (software-in-the-loop combined artificial intelligence method for dynamic response analysis of FOWTs), to overcome these challenges. This paper addresses a further and in-depth investigation of the key technologies of the key disciplinary parameters (KDPs) in the SADA method to obtain a novel and accurate analysis method for dynamic responses prediction of FOWTs. First, the categorization of KDPs is introduced, which can be divided into three categories: environmental KDPs, disciplinary KDPs, and specific KDPs. Second, two factors, the number of KDPs and boundary adjustment of KDPs, are investigated through the reinforcement learning algorithm within the SADA method. Basin experimental data of a spar-type FOWT is used for AI training. The results show that more proper KDPs set in the SADA method can lead to higher accuracy for the prediction of FOWTs. Besides, reasonable boundary conditions will also contribute to the convergence of the algorithms efficiently. Finally, the instruction on how to better choose KDPs and how to set and adjust their boundary conditions is given in the conclusion. The application of KDPs in the SADA method not only provides a deeper understanding of the dynamic response of the entire FOWTs system but also provides a promising solution to overcome the challenges of validation.

References

1.
Hannon
,
M.
,
Topham
,
E.
,
Dixon
,
J.
,
McMillan
,
D.
, and
Collu
,
M.
,
2019
,
Offshore Wind, Ready to Float? Global and UK Trends in the Floating Offshore Wind Market
,
University of Strathclyde
,
Glasgow
.
2.
Jonkman
,
J.
, and
Musial
,
W.
,
2010
, “
Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment
,” National Renewable Energy Lab. (NREL), Golden, CO.
3.
Robertson
,
A.
,
Jonkman
,
J.
,
Masciola
,
M.
,
Song
,
H.
,
Goupee
,
A.
,
Coulling
,
A.
, and
Luan
,
C.
,
2014
, “
Definition of the Semisubmersible Floating System for Phase II of OC4
,” http://purl.fdlp.gov/GPO/gpo43219
4.
Robertson
,
A. N.
,
Wendt
,
F.
,
Jonkman
,
J. M.
,
Popko
,
W.
,
Dagher
,
H.
,
Gueydon
,
S.
,
Qvist
,
J.
, et al
,
2017
, “
OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine
,”
Energy Procedia
,
137
(Part of Special Issue: 14th Deep Sea Offshore Wind R&D Conference, EERA DeepWind'2017), pp.
38
57
.
5.
Robertson
,
A. N.
,
Gueydon
,
S.
,
Bachynski
,
E.
,
Wang
,
L.
,
Jonkman
,
J.
,
Alarcón
,
D.
,
Amet
,
E.
,
Beardsell
,
A.
,
Bonnet
,
P.
, and
Boudet
,
B.
,
2020
, “
OC6 Phase I: Investigating the Underprediction of Low-Frequency Hydrodynamic Loads and Responses of a Floating Wind Turbine
,”
J. Phys. Conf. Series
,
1618
, p.
032033
.
6.
Popko
,
W.
,
Robertson
,
A.
,
Jonkman
,
J.
,
Wendt
,
F.
,
Thomas
,
P.
,
Müller
,
K.
,
Kretschmer
,
M.
, et al
,
2021
, “
Validation of Numerical Models of the Offshore Wind Turbine From the Alpha Ventus Wind Farm Against Full-Scale Measurements Within OC5 Phase III
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
1
), p.
012002
.
7.
Chen
,
P.
,
Chen
,
J.
, and
Hu
,
Z.
,
2020
, “
Review of Experimental-Numerical Methodologies and Challenges for Floating Offshore Wind Turbines
,”
J. Mar. Sci. Appl.
,
19
(
3
), pp.
339
361
.
8.
Assets, O. R. F. C. O.
,
2021
, “
Publications—Robot & Asset Self-Certification
,” https://orcahub.org/latest/publications/publications-robot-asset-self-certification
9.
Garnier
,
P.
,
Viquerat
,
J.
,
Rabault
,
J.
,
Larcher
,
A.
,
Kuhnle
,
A.
, and
Hachem
,
E.
,
2021
, “
A Review on Deep Reinforcement Learning for Fluid Mechanics
,”
Comput. Fluids
,
225
, p.
104973
.
10.
Garmier
,
P.
,
Viquerat
,
J.
,
Rabault
,
J.
,
Larcher
,
A.
,
Kuhnle
,
A.
, and
Hachem
,
E.
,
2021
, “
A Review on Deep Reinforcement Learning for Fluid Mechanics
,”
Computers & Fluids
,
225
, p.
104973
.
11.
Li
,
L.
,
Gao
,
Z.
, and
Yuan
,
Z.-M.
,
2019
, “
On the Sensitivity and Uncertainty of Wave Energy Conversion With an Artificial Neural-Network-Based Controller
,”
Ocean Eng.
,
183
, pp.
282
293
.
12.
Li
,
L.
,
Gao
,
Y.
,
Ning
,
D.
, and
Yuan
,
Z.
,
2020
, “
Development of a Constraint Non-Causal Wave Energy Control Algorithm Based on Artificial Intelligence
,”
Renew. Sustain. Energy Rev.
,
138
, p.
110519
.
13.
Xie
,
Y.
,
Zhao
,
X.
, and
Luo
,
M.
,
2022
, “
An Active-Controlled Heaving Plate Breakwater Trained by an Intelligent Framework Based on Deep Reinforcement Learning
,”
Ocean Eng.
,
244
, p.
110357
.
14.
Li
,
G.
, and
Shi
,
J. J. A. E.
,
2010
, “
On Comparing Three Artificial Neural Networks for Wind Speed Forecasting
,”
Appl. Energy
,
87
(
7
), pp.
2313
2320
.
15.
Pelletier
,
F.
,
Masson
,
C.
, and
Tahan
,
A.
,
2016
, “
Wind Turbine Power Curve Modelling Using Artificial Neural Network
,”
Renew. Energy
,
89
, pp.
207
214
.
16.
Li
,
S.
,
2003
, “
Wind Power Prediction Using Recurrent Multilayer Perceptron Neural Networks
,”
2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No. 03CH37491)
,
Toronto, ON, Canada
,
July 13–17
, IEEE, pp.
2325
2330
.
17.
Kusiak
,
A.
,
Zheng
,
H.
, and
Song
,
Z.
,
2009
, “
Wind Farm Power Prediction: A Data-Mining Approach
,”
Wind Energy
,
12
(
3
), pp.
275
293
.
18.
Sun
,
H.
,
Qiu
,
C.
,
Lu
,
L.
,
Gao
,
X.
,
Chen
,
J.
, and
Yang
,
H. J. A. E.
,
2020
, “
Wind Turbine Power Modelling and Optimization Using Artificial Neural Network With Wind Field Experimental Data
,”
Appl. Energy
,
280
, p.
115880
.
19.
Stetco
,
A.
,
Dinmohammadi
,
F.
,
Zhao
,
X.
,
Robu
,
V.
,
Flynn
,
D.
,
Barnes
,
M.
,
Keane
,
J.
, and
Nenadic
,
G.
,
2019
, “
Machine Learning Methods for Wind Turbine Condition Monitoring: A Review
,”
Renew. Energy
,
133
, pp.
620
635
.
20.
Chen
,
P.
,
Chen
,
J.
, and
Hu
,
Z.
,
2021
, “
Software-in-the-Loop Combined Reinforcement Learning Method for Dynamic Response Analysis of FOWTs
,”
Front. Mar. Sci.
,
7
, p.
1242
.
21.
Chen
,
P.
,
Song
,
L.
,
Chen
,
J.-H.
, and
Hu
,
Z.
,
2021
, “
Simulation Annealing Diagnosis Algorithm Method for Optimized Forecast of the Dynamic Response of Floating Offshore Wind Turbines
,”
J. Hydrodyn.
,
33
(
2
), pp.
216
225
.
22.
Chen
,
J.
,
Hu
,
Z.
,
Liu
,
G.
, and
Wan
,
D.
,
2019
, “
Coupled Aero-Hydro-Servo-Elastic Methods for Floating Wind Turbines
,”
Renew. Energy
,
130
, pp.
139
153
.
23.
Faltinsen
,
O.
,
1993
,
Sea Loads on Ships and Offshore Structures
,
Cambridge University Press
,
Cambridge
.
24.
Hansen
,
M. O. L.
,
2015
,
Aerodynamics of Wind Turbines
,
Routledge
,
London
.
25.
Duan
,
F.
,
Hu
,
Z.
, and
Niedzwecki
,
J.
,
2016
, “
Model Test Investigation of a Spar Floating Wind Turbine
,”
Mar. Struct.
,
49
, pp.
76
96
.
You do not currently have access to this content.