Abstract

It is well known that material properties undergo significant changes with temperature. In order to meet extreme environmental requirements for ships and offshore structures operating in Arctic regions, the effect of temperature on material behavior needs to be considered. In recent studies, significantly higher fatigue strength was observed for base materials and welded joints in comparison to room temperature. Fatigue strength increased even for temperatures far below the allowed service temperature based on fracture toughness results; however, sub-zero temperatures fatigue data are scarce and the effects of steel strength and welding type on fatigue strength changes are unknown. Material selection for ships and offshore structures is typically based on empirical Charpy and fracture toughness relations at the design temperature, minus a safety margin. Thus, this study presents material test results including fatigue tests of butt-welded joints, tensile test, and Charpy impact toughness tests at room and sub-zero temperatures of different structural steel types. Additionally, the effect of welding techniques and steel strength are discussed. The results can be used to extend design approaches for ships and offshore structures subject to sub-zero temperatures and to improve material selection for ships and offshore structures operating in Arctic regions.

References

1.
Alvaro
,
A.
,
Akselsen
,
O. M.
,
Ren
,
X. B.
, and
Kane
,
A.
,
2014
, “
Fundamental Aspects of Fatigue of Steel in Arctic Applications
,”
Proceedings of the 24th International Ocean and Polar Engineering Conference
,
Busan, South Korea
,
June 15–20
.
2.
Paik
,
J. K.
,
Kim
,
K. J.
,
Lee
,
J. H.
,
Jung
,
B. G.
, and
Kim
,
S. J.
,
2017
, “
Test Database of the Mechanical Properties of Mild, High-Tensile and Stainless Steel and Aluminium Alloy Associated With Cold Temperatures and Strain Rates
,”
Ships Offshore Struct.
,
12
(
sup1
), pp.
S230
S256
. 10.1080/17445302.2016.1262729
3.
Ehlers
,
S.
, and
Østby
,
E.
,
2012
, “
Increased Crashworthiness Due to Arctic Conditions—The Influence of Sub-zero Temperature
,”
Mar. struct.
,
28
(
1
), pp.
86
100
. 10.1016/j.marstruc.2012.05.004
4.
Yan
,
J. B.
,
Liew
,
J. Y. R.
,
Zhang
,
M. H.
, and
Wang
,
J. Y.
,
2014
, “
Mechanical Properties of Normal Strength Mild Steel and High Strength Steel S690 in Low Temperature Relevant to Arctic Environment
,”
Mater. Des.
,
61
, pp.
150
159
. 10.1016/j.matdes.2014.04.057
5.
Ren
,
X. B.
,
Nordhagen
,
H. O.
,
Zhang
,
Z. L.
, and
Akselsen
,
O. M.
,
2015
, “
Tensile Properties of 420 MPa Steel at Low Temperature
,”
Proceedings of the 25th International Ocean and Polar Engineering Conference
,
Kona, HI
,
June 21–26
.
6.
Storheim
,
M.
,
Alsos
,
H. S.
, and
Amdahl
,
J.
,
2018
, “
Evaluation of Nonlinear Material Behavior for Offshore Structures Subjected to Accidental Actions
,”
ASME J. Offshore Mech. Arct. Eng.
,
140
(
4
), p.
041401
. 10.1115/1.4038585
7.
Thieme
,
A.
, and
Schröter
,
F.
,
2013
, “
Modern Heavy Steel Plates for Use in Offshore Installations—Characteristics and Production Processes
,”
Steel Constr. Des. Res.
,
6
(
3
), pp.
186
190
. 10.1002/stco.201310025
8.
Herion
,
S.
,
2018
, “The Properties of Steels Used in Jack-Up Platforms,”
Encyclopedia of Maritime and Offshore Engineering
,
J.
Carlton
,
P.
Jukes
, and
Y. S.
Choo
, eds.,
Wiley
,
New York
, pp.
1
16
.
9.
Wallin
,
K.
,
Karjalainen-Roikonen
,
P.
, and
Pallaspuro
,
S.
,
2016
, “
Low-Temperature Fracture Toughness Estimates for Very High Strength Steels
,”
Int. J. Offshore Polar Eng.
,
26
(
4
), pp.
333
338
. 10.17736/ijope.2016.oa12
10.
Tong
,
L. W.
,
Niu
,
L. C.
,
Jing
,
S.
,
Ai
,
L. W.
, and
Zhao
,
X. L.
,
2018
, “
Low Temperature Impact Toughness of High Strength Structural Steel
,”
Thin Walled Struct.
,
132
, pp.
410
420
. 10.1016/j.tws.2018.09.009
11.
Maddox
,
S. J.
,
2002
,
Fatigue Strength of Welded Structures
,
Woodhead Publishing
,
Cambridge
.
12.
Braun
,
M.
,
Grimm
,
J.-H.
,
Hoffmeister
,
H.
,
Ehlers
,
S.
, and
Fricke
,
W.
,
2018
, “
Comparison of Fatigue Strength of Post-weld Improved High Strength Steel Joints and Notched Base Material Specimens
,”
Ships Offshore Struct.
,
13
, pp.
47
55
. 10.1080/17445302.2018.1425522
13.
Fricke
,
W.
,
2014
, “
Recent Developments and Future Challenges in Fatigue Strength Assessment of Welded Joints
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
229
(
7
), pp.
1224
1239
. 10.1177/0954406214550015
14.
Braun
,
M.
,
Scheffer
,
R.
,
Fricke
,
W.
, and
Ehlers
,
S.
,
2020
, “
Fatigue Strength of Fillet-Welded Joints at Subzero Temperatures
,”
Fatigue Fract. Eng. Mater. Struct.
,
43
(
2
), pp.
403
416
. 10.1111/ffe.13163
15.
EN ISO 19906:2019: Petroleum and Natural Gas Industries—Arctic Offshore Structures
,
2019
,
European Committee for Standardization
,
Brussels, Belgium
.
16.
von Bock und Polach
,
R. U. F.
,
Klein
,
M.
,
Kubiczek
,
J.
,
Kellner
,
L.
,
Braun
,
M.
, and
Herrnring
,
H.
,
2019
, “
State of the Art and Knowledge Gaps on Modelling Structures in Cold Regions
,”
Proceedings of ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering Glasgow
,
Scotland
,
June 9–14
.
17.
Milaković
,
A.-S.
,
Gunnarsson
,
B.
,
Balmasov
,
S.
,
Hong
,
S.
,
Kim
,
K.
,
Schütz
,
P.
, and
Ehlers
,
S.
,
2018
, “
Current Status and Future Operational Models for Transit Shipping Along the Northern Sea Route
,”
Mar. Policy
,
94
, pp.
53
60
. 10.1016/j.marpol.2018.04.027
18.
Walters
,
C. L.
,
Alvaro
,
A.
, and
Maljaars
,
J.
,
2016
, “
The Effect of Low Temperatures on the Fatigue Crack Growth of S460 Structural Steel
,”
Int. J. Fatigue
,
82
, pp.
110
118
. 10.1016/j.ijfatigue.2015.03.007
19.
Suyuthi
,
A.
,
Leira
,
B. J.
, and
Riska
,
K.
,
2013
, “
Fatigue Damage of Ship Hulls Due to Local Ice-Induced Stresses
,”
Appl. Ocean Res.
,
42
, pp.
87
104
. 10.1016/j.apor.2013.05.003
20.
Zhang
,
S.
,
Bridges
,
R.
, and
Tong
,
J.
,
2011
, “
Fatigue Design Assessment of Ship Structures Induced by Ice Loading—An Introduction to the ShipRight FDA ICE Procedure
,”
Proceedings of the Twenty-First International Offshore and Polar Engineering Conference
,
Maui, Hawaii
,
June 19–24
,
International Society of Offshore and Polar Engineers
.
21.
Kim
,
J.-H.
, and
Kim
,
Y.
,
2019
, “
Numerical Simulation on the Ice-Induced Fatigue Damage of Ship Structural Members in Broken Ice Fields
,”
Mar. Struct.
,
66
, pp.
83
105
. 10.1016/j.marstruc.2019.03.002
22.
Milaković
,
A.-S.
,
Braun
,
M.
,
Willems
,
T.
,
Hendrikse
,
H.
,
Fischer
,
C.
, and
Ehlers
,
S.
,
2019
, “
Methodology for Estimating Offshore Wind Turbine Fatigue Life Under Combined Loads of Wind, Waves and Ice at Sub-zero Temperatures
,”
Proceedings of International Conference on Ships and Offshore Structures ICSOS 2019
,
Cape Carnival, FL
,
Nov. 4–8
.
23.
Panin
,
S. V.
,
Vlasov
,
I. V.
,
Maruschak
,
P. O.
,
Eremin
,
A. V.
,
Berto
,
F.
,
Syromyatnikova
,
A. S.
, and
Vinogradov
,
A.
,
2019
, “
Influence of Long-Term Cold Climate Operation on Structure, Fatigue Durability and Impact Toughness of 09Mn2Si Pipe Steel
,”
Eng. Fail. Anal.
,
102
, pp.
87
101
. 10.1016/j.engfailanal.2019.04.036
24.
Zhang
,
D. Y.
,
Wang
,
G.
, and
Yue
,
Q. J.
,
2018
, “
Evaluation of Ice-Induced Fatigue Life for a Vertical Offshore Structure in the Bohai Sea
,”
Cold Reg. Sci. Technol.
,
154
, pp.
103
110
. 10.1016/j.coldregions.2018.05.012
25.
Zhao
,
W.
,
Feng
,
G.
,
Zhang
,
M.
,
Ren
,
H.
, and
Sinsabvarodom
,
C.
,
2020
, “
Effect of Low Temperature on Fatigue Crack Propagation Rates of DH36 Steel and Its Butt Weld
,”
Ocean Eng.
,
196
, p.
106803
. 10.1016/j.oceaneng.2019.106803
26.
Liao
,
X. W.
,
Wang
,
Y. Q.
,
Wang
,
Z. Y.
,
Feng
,
L. Y.
, and
Shi
,
Y. J.
,
2019
, “
Effect of Low Temperatures on Constant Amplitude Fatigue Properties of Q345qD Steel Butt-Welded Joints
,”
Eng. Fail. Anal.
,
105
, pp.
597
609
. 10.1016/j.engfailanal.2019.07.006
27.
Wang
,
K.
,
Wu
,
L.
,
Li
,
Y.-Z.
, and
Qin
,
C.
,
2020
, “
Experimental Study on Low Temperature Fatigue Performance of Polar Icebreaking Ship Steel
,”
Ocean Eng.
,
216
, p.
107789
. 10.1016/j.oceaneng.2020.107789
28.
Braun
,
M.
,
Milaković
,
A.-S.
,
Renken
,
F.
,
Fricke
,
W.
, and
Ehlers
,
S.
,
2020
, “
Application of Local Approaches to the Assessment of Fatigue Test Results Obtained for Welded Joints at Sub-zero Temperatures
,”
Int. J. Fatigue
,
138
, p.
105672
. 10.1016/j.ijfatigue.2020.105672
29.
Braun
,
M.
,
Milaković
,
A.-S.
, and
Ehlers
,
S.
,
2020
, “
Fatigue Assessment of Welded Joints at Sub-zero Temperatures by Means of Stress Averaging Approach
,”
Ships and Offshore Structures
,
Submitted for publication
.
30.
Braun
,
M.
,
Fischer
,
C.
,
Fricke
,
W.
, and
Ehlers
,
S.
,
2020
, “
Extension of the Strain Energy Density Method for Fatigue Assessment of Welded Joints to Sub-zero Temperatures
,”
Fatigue Fract. Eng. Mater. Struct.
,
43
(
12
), pp.
2867
2882
. 10.1111/ffe.13308
31.
Wang
,
Y.
,
Liu
,
J.
,
Hu
,
J.
,
Garbatov
,
Y.
, and
Guedes Soares
,
C.
,
2021
, “
Fatigue Strength of EH36 Steel Welded Joints and Base Material at Low-Temperature
,”
Int. J. Fatigue
,
142
, p.
105896
. 10.1016/j.ijfatigue.2020.105896
32.
Zhang
,
D.
,
Li
,
Z.
,
Wu
,
H.
, and
Huang
,
F.
,
2018
, “
Experimental Study on Fatigue Behavior of Q420 High-Strength Steel at Low Temperatures
,”
J. Constr. Steel Res.
,
145
, pp.
116
127
. 10.1016/j.jcsr.2018.02.008
33.
Common Structural Rules for Oil Tankers and Bulk Carriers
,
2020
,
International Association of Classification Societies (IACS)
.
34.
Recommendation 56, Fatigue Assessment of Ship Structures
,
1999
,
International Association of Classification Societies (IACS)
.
35.
DNV GL Rules for Classification, Ships, Pt. 3 Hull, Chap. 9 Fatigue
,
2019, DNV GL AS
.
36.
DNV GL Rules for Classification, Ships, Part 2: Materials and Welding. Chap. 2 Metallic Materials
,
2017, DNV GL AS
.
37.
DNVGL-CG-0129: Fatigue Assessment of Ship Structures
,
2018
,
DNV GL AS
.
38.
DNVGL-ST-0126, Support Structures for Wind Turbines
,
2018
,
DNV GL AS
.
39.
IEC 61400-3-1:2019, Wind Energy Generation Systems—Part 3-1: Design Requirements for Fixed Offshore Wind Turbines
,
2019
,
International Electrotechnical Commission
.
40.
IEC 61400-1:2019, Wind Energy Generation Systems—Part 1: Design Requirements
,
2019
,
International Electrotechnical Commission
.
41.
EN ISO 19900:2019, Petroleum and Natural Gas Industries—General Requirements for Offshore Structures
,
2019
,
European Committee for Standardization
,
Geneva, Switzerland
.
42.
DNVGL-RP-C203: Recommended Practice for Fatigue Design of Offshore Steel Structures
,
2016
,
DNV GL AS
.
43.
BS EN 1993–1–9:2005—Eurocode 3: Design of Steel Structures—Part 1–9: Fatigue
,
2008
,
European Committee for Standardization
.
44.
EN ISO 19902:2018, Petroleum and Natural Gas Industries—Fixed Steel Offshore Structures
,
2018
,
European Committee for Standardization
,
Geneva, Switzerland
.
45.
Sinsabvarodom
,
C.
,
Chai
,
W.
,
Leira
,
B. J.
,
Høyland
,
K. V.
, and
Naess
,
A.
,
2020
, “
Uncertainty Assessments of Structural Loading Due to First Year Ice Based on the ISO Standard by Using Monte-Carlo Simulation
,”
Ocean Eng.
,
198
, p.
106935
. 10.1016/j.oceaneng.2020.106935
46.
Sun
,
C.
, and
Jahangiri
,
V.
,
2019
, “
Fatigue Damage Mitigation of Offshore Wind Turbines Under Real Wind and Wave Conditions
,”
Eng. Struct.
,
178
, pp.
472
483
. 10.1016/j.engstruct.2018.10.053
47.
Hendrikse
,
H.
,
2017
, “
Ice-Induced Vibrations of Vertically Sided Offshore Structures
,”
Doctoral thesis
,
TU Delft, Delft. The Netherlands
.
48.
Hendrikse
,
H.
, and
Nord
,
T. S.
,
2019
, “
Dynamic Response of an Offshore Structure Interacting With an Ice Floe Failing in Crushing
,”
Mar. Struct.
,
65
, pp.
271
290
. 10.1016/j.marstruc.2019.01.012
49.
Chung
,
J.
,
Wallerand
,
R.
, and
Hélias-Brault
,
M.
,
2013
, “
Pile Fatigue Assessment During Driving
,”
Procedia Eng.
,
66
, pp.
451
463
. 10.1016/j.proeng.2013.12.098
50.
BS 7910:2013+A1:2015 Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures
,
2015
,
British Standards Institution
.
51.
International Convention for the Safety of Life at Sea (SOLAS), Chapter XIV, Safety Measures for Ships Operating in Polar Waters
,
2014
,
International Maritime Organisation (IMO)
.
52.
International Code for Ships Operating in Polar Waters (Polar Code)
,
2014
,
International Maritime Organisation (IMO)
.
53.
Unified Requirement S6, Use of Steel Grades for Various Hull Members—Ships of 90 m in Length and Above
,
2015
,
International Association of Classification Societies (IACS)
.
54.
Unified Requirement I, Requirements Concerning Polar Class
,
2016
,
International Association of Classification Societies (IACS)
.
55.
EN 1993-1-10:2005 + AC:2009, Eurocode 3: Design of Steel Structures—Part 1-10: Material Toughness and Through-Thickness Properties 2010
,
European Committee for Standardization
.
56.
EN 10225-1:2019 Weldable Structural Steels for Fixed Offshore Structures—Technical Delivery Conditions—Part 1: Plates
,
2019
,
European Committee for Standardization
.
57.
API SPECIFICATION 2W Specification for Steel Plates for Offshore Structures, Produced by Thermo-mechanical Control Processing (TMCP)
,
2019
,
American Petroleum Institute
,
Washington, DC
.
58.
NORSOK Standard M120 Material Data Sheets for Structural Steel
,
2008
,
Norwegian Standards Institution
,
Lysaker, Norway
.
59.
DNVGL-OS-C401: Fabrication and Testing of Offshore Structures
,
2018
,
DNV GL AS
.
60.
DNVGL-OS-B101, Metallic Materials
,
2018
,
DNV GL AS
.
61.
Horn
,
A. M.
,
Østby
,
E.
,
Hauge
,
M.
, and
Aubert
,
J.-M.
,
2012
, “
Robust Material Qualification for Arctic Applications
,”
Proceedings of the 22nd International Offshore and Polar Engineering Conference
,
Rhodes (Rodos), Greece
,
June 17–23
.
62.
Hauge
,
M.
,
Maier
,
M.
,
Walters
,
C. L.
,
Østby
,
E.
,
Kordonets
,
S. M.
,
Zanfir
,
C.
, and
Osvoll
,
H.
,
2015
, “
Status Update of ISO TC67/SC8/WG5: Materials for Arctic Applications
,”
Proceedings of the 25th International Ocean and Polar Engineering Conference
,
Kona, HI
,
June 21–26
.
63.
Østby
,
E.
,
Hauge
,
M.
, and
Horn
,
A.
,
2015
, “
Development of Materials Requirement Philosophies for Design to Avoid Brittle Behaviour in Steel Structures Under Arctic Conditions
,”
Proceedings of the 25th International Ocean and Polar Engineering Conference
,
Kona, HI
,
June 21–26
.
64.
Ehlers
,
S.
,
Polojärvi
,
A.
,
Vredeveldt
,
A.
,
Quinton
,
B.
,
Kim
,
E.
,
Ralph
,
F.
,
Sirkar
,
J.
,
Moslet
,
P. O.
,
Fukui
,
T.
,
Kuehnlein
,
W.
, and
Wan
,
Z.
,
2018
, “
Committee V.6: Arctic Technology
,”
Proceedings of the 20th International Ship and Offshore Structures Congress (ISSC 2018)
, Vol.
2
,
M. L.
Kaminski
, and
P.
Rigo
, eds.,
IOS Press
,
Amsterdam
, pp.
347
390
.
65.
Kubiczek
,
J.
,
Herrnring
,
H.
,
Kellner
,
L.
,
Ehlers
,
S.
, and
Diewald
,
R.
,
2019
, “
Simulation of Temperature Distribution in Ship Structures for the Determination of Temperature- Dependent Material Properties
,”
Proceedings of 12th European LS-DYNA Conference
,
Koblenz, Germany
,
May 14–16
.
66.
Kühn
,
B.
, and
Krieglstein
,
T.
,
2017
, “
Sufficient Choice of Material to Avoid Brittle Fractures of Foundation Components of Offshore Wind Power Plants Made of Steel in Accordance With EC3 Part 1-10
,”
ce/papers
,
1
(
4
), pp.
601
618
. 10.1002/cepa.557
67.
van Es
,
S.
,
Slot
,
H.
,
Steenbergen
,
H.
,
Maljaars
,
J.
, and
Pijpers
,
R.
,
2018
, “
Use of HSS and VHSS in Steel Structures in Civil and Offshore Engineering
,”
Steel Constr. Des. Res.
,
11
(
4
), pp.
249
256
. 10.1002/stco.201800018
68.
ISO/TS 35105:2018, Petroleum and Natural Gas Industries—Arctic Operations—Material Requirements for Arctic Operations
,
2018
,
International Standards Organization
,
Geneva, Switzerland
.
69.
Hobbacher
,
A. F.
,
2016
,
Recommendations for Fatigue Design of Welded Joints and Components
,
Springer International Publishing
,
Cham, Switzerland
.
70.
Walters
,
C. L.
,
2014
, “
The Effect of Low Temperatures on the Fatigue of High-Strength Structural Grade Steels
,”
Proceedings of 20th European Conference on Fracture
,
Trondheim, Norway
,
June 30–July 4
.
71.
Alvaro
,
A.
,
Akselsen
,
O. M.
,
Ren
,
X. B.
,
Perillo
,
G.
, and
Nyhus
,
B.
,
2017
, “
On the Relation Between Fatigue and Static Ductile to Brittle Transition for Weld Simulated 420 MPa Structural Steel
,”
Proceedings of the 27th International Ocean and Polar Engineering Conference
,
San Francisco, CA
,
June 25–30
.
72.
Alvaro
,
A.
,
Akselsen
,
O. M.
,
Ren
,
X. B.
, and
Nyhus
,
B.
,
2016
, “
Fatigue Crack Growth of a 420 MPa Structural Steel Heat Affected Zone at Low Temperatures
,”
Proceedings of the 26th International Ocean and Polar Engineering Conference
,
Rhodes, Greece
,
June 26–July 2
.
73.
Bridges
,
R.
,
Zhang
,
S.
, and
Shaposhnikov
,
V.
,
2012
, “
Experimental Investigation on the Effect of Low Temperatures on the Fatigue Strength of Welded Steel Joints
,”
Ships Offshore Struct.
,
7
(
3
), pp.
311
319
. 10.1080/17445302.2011.563550
74.
Braun
,
M.
,
Milaković
,
A.-S.
,
Andresen-Paulsen
,
G.
,
Fricke
,
W.
, and
Ehlers
,
S.
,
2020
, “
A Novel Approach to Consider Misalignment Effects in Assessment of Fatigue Tests
,”
Ship Technology Research
.
Submitted for publication
.
75.
Merkblatt DVS 2403 Empfehlungen für die Durchführung, Auswertung und Dokumentation von Schwingfestigkeitsversuchen an Schweißverbindungen metallischer Werkstoffe
,
2019
,
DVS, Düsseldorf
.
76.
Schubnell
,
J.
,
Jung
,
M.
,
Le
,
C. H.
,
Farajian
,
M.
,
Braun
,
M.
,
Ehlers
,
S.
,
Fricke
,
W.
,
Garcia
,
M.
,
Nussbaumer
,
A.
, and
Baumgartner
,
J.
,
2020
, “
Influence of the Optical Measurement Technique and Evaluation Approach on the Determination of Local Weld Geometry Parameters for Different Weld Types
,”
Weld. World
,
64
(
2
), pp.
301
316
. 10.1007/s40194-019-00830-0
77.
EN ISO 5817:2014 Welding—Fusion Welded Joints in Steel, Nickel, Titanium and Their Alloys (Beam Welding Excluded)—Quality Levels for Imperfections
,
2014
,
European Committee for Standardization
.
78.
Martin
,
A.
,
Hinkelmann
,
K.
, and
Esderts
,
A.
,
2011
, “
Zur Auswertung von Schwingfestigkeitsversuchen im Zeitfestigkeitsbereich—Teil 1: Wie Zuverlässig köNnen 50 %-WöHlerlinien aus Experimentellen Daten Geschätzt Werden?
,”
Mater. Test.
,
53
(
9
), pp.
513
521
. 10.3139/120.110256
79.
Braun
,
M.
,
Milaković
,
A.-S.
,
Ehlers
,
S.
,
Kahl
,
A.
,
Willems
,
T.
,
Seidel
,
M.
, and
Fischer
,
C.
,
2020
, “
Sub-zero Temperature Fatigue Strength of Butt-Welded Normal and High-Strength Steel Joints for Ships and Offshore Structures in Arctic Regions
,”
Proceedings of ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering
,
Fort Lauderdale, FL
,
June 28–July 3
.
80.
Zerbst
,
U.
,
Ainsworth
,
R. A.
,
Beier
,
H. T.
,
Pisarski
,
H.
,
Zhang
,
Z. L.
,
Nikbin
,
K.
,
Nitschke-Pagel
,
T.
,
Munstermann
,
S.
,
Kucharczyk
,
P.
, and
Klingbeil
,
D.
,
2014
, “
Review on Fracture and Crack Propagation in Weldments—A Fracture Mechanics Perspective
,”
Eng. Fract. Mech.
,
132
, pp.
200
276
. 10.1016/j.engfracmech.2014.05.012
81.
Gubeljak
,
N.
,
Legat
,
J.
, and
Koçak
,
M.
,
2002
, “
Effect of Fracture Path on the Toughness of Weld Metal
,”
Int. J. Fract.
,
115
(
4
), pp.
343
359
. 10.1023/A:1016368019571
82.
Coronado
,
J. J.
, and
Cerón
,
C.
,
2010
, “
Fracture Mechanisms of CTOD Samples of Submerged and Flux Cored Arc Welding
,”
Theor. Appl. Fract. Mec.
,
53
(
2
), pp.
145
151
. 10.1016/j.tafmec.2010.03.008
83.
Vojvodic Tuma
,
J.
, and
Sedmak
,
A.
,
2004
, “
Analysis of the Unstable Fracture Behaviour of a High Strength Low Alloy Steel Weldment
,”
Eng. Fract. Mech.
,
71
(
9–10
), pp.
1435
1451
. 10.1016/S0013-7944(03)00166-8
84.
Walters
,
C. L.
, and
Przydatek
,
J.
,
2014
, “
Relating Structural Loading Rate to Testing Rate for Fracture Mechanics Specimens
,”
Proceedings of ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
,
San Francisco, CA
,
June 8–13
.
85.
Toyosada
,
M.
,
Fujii
,
E.
,
Nohara
,
K.
,
Kawaguchi
,
Y.
,
Arimochi
,
K.
, and
Isaka
,
K.
,
1987
, “
The Effect of Strain Rate on Critical CTOD and J Integral
,”
J. Soc. Nav. Archit. Jpn.
,
1987
(
161
), pp.
343
356
. 10.2534/jjasnaoe1968.1987.343
86.
Walters
,
C. L.
,
Voormeeren
,
L. O.
, and
Janssen
,
M.
,
2013
, “
The Use of Crosshead Displacement in Determining Fracture Parameters
,”
Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering
,
pp.
9
14
.
87.
EN ISO 6892-1:2016 Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature
,
2016
,
European Committee for Standardization
.
88.
EN ISO 6892-3:2015 Metallic Materials—Tensile Testing—Part 3: Method of Test at Low Temperature
,
2015
,
European Committee for Standardization
.
89.
EN ISO 26203-2:2011: Metallic Materials—Tensile Testing at High Strain Rates—Part 2: Servo-Hydraulic and Other Test Systems
,
2011
,
European Committee for Standardization
.
90.
Avril
,
S.
,
Pierron
,
F.
,
Sutton
,
M. A.
, and
Yan
,
J. H.
,
2008
, “
Identification of Elasto-visco-Plastic Parameters and Characterization of Luders Behavior Using Digital Image Correlation and the Virtual Fields Method
,”
Mech. Mater.
,
40
(
9
), pp.
729
742
. 10.1016/j.mechmat.2008.03.007
91.
EN ISO 15653:2018 Metallic materials—Method of Test for the Determination of Quasistatic Fracture Toughness of Welds
,
2018
,
European Committee for Standardization
.
92.
EN 1993-1-1:2005 + AC:2009, Eurocode 3: Design of Steel Structures, Part 1-1: General Rules and Rules for Buildings
,
2010
,
European Committee for Standardization
,
Brussels, Belgium
.
93.
EN 1993-1-12:2005 + AC:2009, Eurocode 3: Design of Steel Structures, Part 1-12: Additional Rules for the Extension of EN 1993 up to Steel Grades S700 2010
,
European Committee for Standardization
,
Brussels, Belgium
.
You do not currently have access to this content.