Abstract

This work presents an enhanced hybrid methodology for the analysis and design of floating production systems (FPS). The semi-coupled (S-C) procedure exploits the advantages of coupled and uncoupled models, incorporated into a three-stage sequence of analyses that can be fully automated within a single analysis program, presenting striking reductions of computational costs. The procedure begins by determining, through a full nonlinear static coupled analysis, the mean equilibrium position of the FPS with its mooring lines and risers. Then, it automatically evaluates equivalent six degrees-of-freedom (6DOF) stiffness matrices and force vectors representing the whole array of lines. Finally, these matrices/vectors are transferred to the dynamic analysis, solving the global 6DOF equations of motion restarted from the static equilibrium position. This way, the S-C methodology represents all nonlinear effects associated with the lines and considers their influence on the dynamic behavior of the hull. However, in some situations, it could still overestimate dynamic amplitudes of low-frequency (LF) motions and/or underestimate amplitudes of line tensions. Thus, to improve the overall accuracy, enhanced procedures are incorporated to better represent damping and inertial contribution of the lines. Results of case studies confirm that this methodology provides results adequate for preliminary or intermediary design stages.

References

1.
Ormberg
,
H.
, and
Larsen
,
K.
,
1998
, “
Coupled Analysis of Floater Motion and Mooring Dynamics a Turret-Moored Ship
,”
Appl. Ocean Res.
,
20
(
1–2
), pp.
55
67
. 10.1016/S0141-1187(98)00012-1
2.
Tahar
,
A.
, and
Kim
,
M. H.
,
2003
, “
Hull/Mooring/Riser Coupled Dynamic Analysis and Sensitivity Study of a Tanker-Based FPSO
,”
Appl. Ocean Res.
,
25
(
6
), pp.
367
382
. 10.1016/j.apor.2003.02.001
3.
Kim
,
M. H.
,
Koo
,
B. J.
,
Mercier
,
R. M.
, and
Ward
,
E. G.
,
2005
, “
Vessel/Mooring/Riser Coupled Dynamic Analysis of a Turret-Moored FPSO Compared With OTRC Experiment
,”
Ocean Eng.
,
32
(
14–15
), pp.
1780
1802
. 10.1016/j.oceaneng.2004.12.013
4.
Jacob
,
B. P.
,
Bahiense
,
R. D. A.
,
Correa
,
F. N.
, and
Jacovazzo
,
B. M.
,
2012
, “
Parallel Implementations of Coupled Formulations for the Analysis of Floating Production Systems, Part I: Coupling Formulations
,”
Ocean Eng.
,
55
, pp.
206
218
. 10.1016/j.oceaneng.2012.06.019
5.
Jacob
,
B. P.
,
Franco
,
L. D.
,
Rodrigues
,
M. V.
,
Correa
,
F. N.
, and
Jacovazzo
,
B. M.
,
2012
, “
Parallel Implementations of Coupled Formulations for the Analysis of Floating Production Systems, Part II: Domain Decomposition Strategies
,”
Ocean Eng.
,
55
, pp.
219
234
. 10.1016/j.oceaneng.2012.06.018
6.
Rodrigues
,
M. V.
,
Correa
,
F. N.
, and
Jacob
,
B. P.
,
2007
, “
Implicit Domain Decomposition Methods for Coupled Analysis of Offshore Platforms
,”
Commun. Numer. Methods Eng.
,
23
(
6
), pp.
599
621
. 10.1002/cnm.945
7.
Jacob
,
B. P.
, and
Ebecken
,
N. F. F.
,
1993
, “
Adaptive Time Integration of Nonlinear Structural Dynamic Problems
,”
European J. Mech., A-Solids
,
12
(
2
), pp.
277
298
.
8.
Jacob
,
B. P.
, and
Ebecken
,
N. F. F.
,
1994
, “
Towards an Adaptive ‘Semi-Implicit’ Solution Scheme for Nonlinear Structural Dynamic Problems
,”
Comput. Struct.
,
52
(
3
), pp.
495
504
. 10.1016/0045-7949(94)90235-6
9.
Jacob
,
B. P.
, and
Ebecken
,
N. F. F.
,
1994
, “
An Optimized Implementation of the Newmark/Newton-Raphson Algorithm for the Time Integration of Non-linear Problems
,”
Commun. Numer. Methods Eng.
,
10
(
12
), pp.
983
992
. 10.1002/cnm.1640101204
10.
Correa
,
F. N.
,
Jacob
,
B. P.
, and
Mansur
,
W. J.
,
2010
, “
Formulation of an Efficient Hybrid Time-Frequency Domain Solution Procedure for Linear Structural Dynamic Problems
,”
Comput. Struct.
,
88
(
5–6
), pp.
331
346
. 10.1016/j.compstruc.2009.11.008
11.
Garrett
,
D. L.
,
Chappell
,
J. F.
, and
Gordon
,
R. B.
,
2002
, “
Global Performance of Floating Production Systems
,”
Offshore Technology Conference
,
Houston, TX
,
May 6–9
, OTC 14230.
12.
Garrett
,
D. L.
,
Gordon
,
R. B.
, and
Chappell
,
J. F.
,
2002
, “
Mooring- and Riser-Induced Damping in Fatigue Seastates
,”
OMAE’02—21th International Conference on Offshore Mechanics and Arctic Engineering
,
Oslo, Norway
,
June 23–28
, pp.
793
799
.
13.
Garrett
,
D. L.
,
2005
, “
Coupled Analysis of Floating Production Systems
,”
Ocean Eng.
,
32
(
7
), pp.
802
816
. 10.1016/j.oceaneng.2004.10.010
14.
Low
,
Y. M.
, and
Langley
,
R. S.
,
2006
, “
Time and Frequency Domain Coupled Analysis of Deepwater Floating Production Systems
,”
Appl. Ocean Res.
,
28
(
6
), pp.
371
385
. 10.1016/j.apor.2007.05.002
15.
Low
,
Y. M.
, and
Langley
,
R. S.
,
2008
, “
A Hybrid Time/Frequency Domain Approach for Efficient Coupled Analysis of Vessel/Mooring/Riser Dynamics
,”
Ocean Eng.
,
35
(
5–6
), pp.
433
446
. 10.1016/j.oceaneng.2008.01.001
16.
Low
,
Y. M.
, and
Grime
,
A. J.
,
2010
, “
Extreme Response Analysis of Floating Structures Using Coupled Frequency Domain Analysis
,”
OMAE2010—ASME 29th International Conference on Ocean
,
Shanghai, China
,
June 6–11
, pp.
21
30
.
17.
Low
,
Y. M.
,
2008
, “
Prediction of Extreme Responses of Floating Structures Using a Hybrid Time/Frequency Domain Coupled Analysis Approach
,”
Ocean Eng.
,
35
(
14–15
), pp.
1416
1428
. 10.1016/j.oceaneng.2008.07.006
18.
Low
,
Y. M.
,
2011
, “
Extending a Time/Frequency Domain Hybrid Method for Riser Fatigue Analysis
,”
Appl. Ocean Res.
,
33
(
2
), pp.
79
87
. 10.1016/j.apor.2011.02.003
19.
Jacob
,
B. P.
, and
Ebecken
,
N. F. F.
,
1992
, “
Adaptive Reduced Integration Method for Nonlinear Structural Dynamic Analysis
,”
Comput. Struct.
,
45
(
2
), pp.
333
347
. 10.1016/0045-7949(92)90417-X
20.
Correa
,
F. N.
,
Jacovazzo
,
B. M.
,
De Lima
,
M. H. A.
, and
Jacob
,
B. P.
,
2015
, “
A Reduced Integration Method for the Coupled Analysis of Floating Production Systems
,”
Ocean Eng.
,
104
, pp.
422
436
. 10.1016/j.oceaneng.2015.05.033
21.
Senra
,
S. F.
,
Correa
,
F. N.
,
Jacob
,
B. P.
,
Mourelle
,
M. M.
, and
Masett
,
I. Q.
,
2002
, “
Towards the Integration of Analysis and Design of Mooring Systems and Risers, Part I: Studies on a Semisubmerslble Platform
,”
OMAE’02—21th International Conference on Offshore Mechanics and Arctic Engineering
,
Oslo, Norway
,
June 23–28
, pp.
41
48
.
22.
Correa
,
F. N.
,
Senra
,
S. F.
,
Jacob
,
B. P.
,
Masetti
,
I. Q.
, and
Mourelle
,
M. M.
,
2002
, “
Towards the Integration of Analysis and Design of Mooring Systems and Risers, Part II: Studies on a DICAS System
,”
OMAE’02—21th International Conference on Offshore Mechanics and Arctic Engineering
,
Oslo, Norway
,
June 23–28
, pp.
291
298
.
23.
Senra
,
S. F.
,
Mourelle
,
M. M.
,
Torres
,
A. L. F. L.
, and
Jacob
,
B. P.
,
2005
, “
Hybrid Coupled and Uncoupled Methodologies for Floating Systems Motion Analysis
,”
ISOPE 2005—Fifteenth International Offshore and Polar Engineering Conference
,
Seoul, South Korea
,
June 19–24
, pp.
414
421
.
24.
Ormberg
,
H.
,
Sodahl
,
N.
, and
Steinkjer
,
O.
,
1998
, “
Efficient Analysis of Mooring Systems Using De-coupled and Coupled Analysis
,”
OMAE98—17th International Conference on Offshore Mechanics and Arctic Engineering
,
Lisbon, Portugal
,
July 5–9
, OMAE98-0351.
25.
Corrêa
,
F. N.
, and
Jacob
,
B. P.
,
2013
, “
Semi-coupled Scheme for the Analysis of Floating Production Systems
,”
OMAE 2013—32nd International Conference on Ocean
,
Nantes, France
,
June 9–14
, OMAE2013-11260.
26.
Cruces-Girón
,
A. R.
,
Corrêa
,
F. N.
, and
Jacob
,
B. P.
,
2014
, “
An Evaluation of the Semi-Coupled Scheme for the Analysis of Floating Production Systems
,”
OMAE 2014—33rd International Conference on Ocean
,
San Francisco, CA
,
June 8–13
, OMAE2014-23006.
27.
Cruces-Girón
,
A. R.
,
Correa
,
F. N.
, and
Jacob
,
B. P.
,
2019
, “
A Semi-Coupled Methodology for the Motion Analysis of Floating Production Systems
,”
Ships Offshore Struct.
,
14
(
4
), pp.
363
370
. 10.1080/17445302.2016.1212485
28.
Cruces-Girón
,
A. R.
,
Correa
,
F. N.
,
Vázquez Hernández
,
A. O.
, and
Jacob
,
B. P.
,
2014
, “
An Integrated Methodology for the Design of Mooring Systems and Risers
,”
Marine Struct.
,
39
, pp.
395
423
. 10.1016/j.marstruc.2014.10.005
29.
Meirovitch
,
L.
,
1970
,
Methods of Analytical Dynamics
,
McGraw-Hill Book Company, New York
.
30.
Hooft
,
J. P.
,
1982
,
Advanced Dynamics of Marine Structures
,
John Wiley & Sons, New York
.
31.
Paulling
,
J. R.
,
1992
,
TDSIM6 - Time Domain Platform Motion Simulation with Six Degrees ofFreedom: Theory and User Guide
,
Deep Oil Technology, Inc.
,
Houston, TX
.
32.
Morison
,
J. R.
,
[Q11]O’Brien
,
M. P.
, and
Johnson
,
J. W.
,
1950
, “
The Force Exerted by Surfaces Waves on Piles
,”
Petrol. Trans., AIME
,
189
, pp.
149
157
.
33.
Bathe
,
K. J.
,
1996
,
Finite Element Procedures
,
Prentice-Hall
,
NJ
.
34.
Belytschko
,
T.
,
1983
,
An Overview of Semidiscretization and Time Integration Procedures
,
Computational Methods for Transient Analysis, Elsevier Science Publishers
,
Amsterdam
,
1
65
.
35.
Newmark
,
N. M.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
Journal of the Engineering Mechanics Division, ASCE
,
85
, pp.
67
94
.
36.
Geradin
,
M.
,
Hogge
,
M.
, and
Idelsohn
,
S.
,
1983
,
Implicit Finite Element Methods
,
Computational Methods for Transient Analysis, Elsevier Science Publishers
,
Amsterdam
,
417
471
.
37.
Wood
,
W. L.
,
Bossak
,
M.
, and
Zienkiewicz
,
O. C.
,
1980
, “
An Alpha Modification of Newmark’s Method
,”
Int. J. Numer. Methods Eng.
,
15
(
10
), pp.
1562
1566
. 10.1002/nme.1620151011
38.
Hilber
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R. L.
,
1977
, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
,
5
(
3
), pp.
283
292
. 10.1002/eqe.4290050306
39.
Connaire
,
A.
,
Kavanagh
,
K.
,
Ahilan
,
R. V.
, and
Goodwin
,
P.
,
1999
, “
Integrated Mooring & Riser Design: Analysis Methodology
,”
Offshore Technology Conference
,
Houston, TX
,
May 3–6
, OTC 10810.
40.
Bahiense
,
R. A.
,
de Lima
,
A. L.
,
da Silva
,
D. M. L.
,
Jacob
,
B. P.
, and
Rodrigues
,
M. V.
,
2008
, “
Avaliação de Formulações Fracamente e Fortemente Acopladas Para Análise de Sistemas Flutuantes Offshore
,”
CILAMCE 2008—XXIX Iberian Latin-American Congress on Computational Methods in Engineering
,
Maceió, Brazil
,
Nov. 4–7
, pp.
1
17
.
41.
Senra
,
S. F.
,
Jacob
,
B. P.
,
Correa
,
F. N.
,
Jacovazzo
,
B. M.
,
de Lima
,
A. L.
,
de Lacerda
,
T.Â.G.
, and
Fucatu
,
C. H.
,
2010
, “
Assessment and Calibration of Numerical Coupled Models of a Deep-Draft Semisubmersible Platform Based On Model Tests
,”
ISOPE 2010—Twentieth International Offshore and Polar Engineering Conference
,
Beijing, China
,
June 20–25
, pp.
447
456
.
42.
Rodrigues
,
M. V.
, and
Jacob
,
B. P.
,
2003
, “
Specialized Numerical Tools for Coupled Analysis of Floating Units and Lines
,”
CILAMCE 2003—XXIV Iberian Latin-American Congress on Computational Methods in Engineering
,
Ouro Preto, Brazil
,
Oct. 29–31
, pp.
1
17
.
43.
Roveri
,
F. E.
, and
Pessoa
,
P. R. F.
,
2005
, “
Free Standing Hybrid Riser for 1800 m Water Depth
,”
OMAE 2005—24th International Conference on Offshore Mechanics and Arctic Engineering
,
Halkidiki, Greece
,
June 12–17
, pp.
437
447
.
44.
Roveri
,
F. E.
,
Velten Filho
,
A. G.
,
Mello
,
V. C.
, and
Marques
,
L. F.
,
2008
, “
The Roncador P-52 Oil Export System—Hybrid Riser at a 1800 m Water Depth
,”
Offshore Technology Conference
,
Houston, TX
,
May 5–8
, OTC 19336.
45.
van ‘t Veer
,
R.
, and
Fathi
,
F.
,
2011
, “
On the Roll Damping of an FPSO With Riser Balcony and Bilge Keels
,”
Int. J. Marit. Eng.
,
153
(
2
), pp.
A125
A135
.
46.
API RP 2SK
,
2015
,
Design and Analysis of Stationkeeping Systems for Floating Structures
, 3rd ed,
American Petroleum Institute
,
Washington, DC
.
47.
Chakrabarti
,
S. K.
,
1987
,
Hydrodynamics of Offshore Structures
,
Computational Mechanics Publications
,
Southampton, Boston, MA
.
You do not currently have access to this content.