Abstract

The Drake Passage is an ocean area between South America and Antarctica with very extreme wind and wave climates. The quality of forecasts of surface winds and significant wave heights is analyzed in the present paper, in order to study the error and distribution of model uncertainties as a function of forecast range, severity, location, and numerical model. The operational metocean forecasts selected are run twice a day by the Brazilian Navy and the forecast horizon analyzed is five days. A period of 1 year (2017) is considered for the assessment. Observations consist of four satellite missions: JASON2, JASON3, CRYOSAT, and SARAL. The atmospheric models with 10-m winds are Global Forecast System (GFS) and Icosahedral Nonhydrostatic Model (icon). They are used as inputs to force the wave model WAVEWATCH III with a mosaic of two grids. Results show that under calm to moderate conditions, within the first 2 days of forecast, the wind and wave model skill is very high. However, above the 90th percentile and beyond the third forecast day, the predictability drops significantly. It highlights specific contours of forecast range versus percentiles where the wind and wave modelers should focus, in order to anticipate and to improve the predictability of extreme events at the Drake Passage.

References

1.
Bromwich
,
D. H.
,
Monaghan
,
A. J.
,
Manning
,
K. W.
, and
Powers
,
J. G.
,
2005
, “
Real-Time Forecasting for the Antarctic: An Evaluation of the Antarctic Mesoscale Prediction System (AMPS)
,”
Mon. Weather Rev.
,
133
(
3
), pp.
579
603
. 10.1175/MWR-2881.1
2.
Bromwich
,
D. H.
,
Otieno
,
F. O.
,
Hines
,
K. M.
,
Manning
,
K. W.
, and
Shilo
,
E.
,
2013
, “
Comprehensive Evaluation of Polar Weather Research and Forecasting Model Performance in the Antarctic
,”
J. Geophys. Res. Atmos.
,
118
(
2
), pp.
274
292
. 10.1029/2012JD018139
3.
Deb
,
P.
,
Orr
,
A.
,
Hosking
,
J. S.
,
Phillips
,
T.
,
Turner
,
J.
,
Bannister
,
D.
,
Pope
,
J. O.
, and
Colwell
,
S.
,
2016
, “
An Assessment of the Polar Weather Research and Forecasting (WRF) Model Representation of Near-Surface Meteorological Variables Over West Antarctica
,”
J. Geophys. Res. Atmos.
,
121
(
4
), pp.
1532
1548
. 10.1002/2015JD024037
4.
Nigro
,
M. A.
,
Cassano
,
J. J.
, and
Knuth
,
S. L.
,
2012
, “
Evaluation of Antarctic Mesoscale Prediction System (AMPS) Cyclone Forecasts Using Infrared Satellite Imagery
,”
Antarct. Sci.
,
24
(
2
), pp.
183
192
. 10.1017/S0954102011000745
5.
Powers
,
J. G.
,
2007
, “
Numerical Prediction of an Antarctica Severe Wind Event with the Weather Research and Forecasting (WRF) Model
,”
Mon. Weather Rev.
,
135
(
9
), pp.
3134
3157
. 10.1175/MWR3459.1
6.
Tastula
,
E.-M.
, and
Vihma
,
T.
,
2011
, “
WRF Model Experiments on the Antarctic Atmosphere in Winter
,”
Mon. Weather Rev.
,
139
(
4
), pp.
1279
1291
. 10.1175/2010MWR3478.1
7.
Simmonds
,
I.
,
Keay
,
K.
, and
Lim
,
E.-P.
,
2003
, “
Synoptic Activity in the Seas Around Antarctica
,”
Mon. Weather Rev.
,
131
(
2
), pp.
272
288
. 10.1175/1520-0493(2003)131<0272:SAITSA>2.0.CO;2
8.
Turner
,
J.
,
Chenoli
,
S. N.
,
Samah
,
A.
,
Marshall
,
G.
,
Phillips
,
T.
, and
Orr
,
A.
,
2009
, “
Strong Wind Events in the Antarctica
,”
J. Geophys. Res.
,
114
. 0148-0227/09/2008JD011642.
9.
Young
,
I. R.
, and
Ribal
,
A.
,
2019
, “
Multiplatform Evaluation of Global Trends in Wind Speed and Wave Height
,”
Science
,
364
(
6440
), pp.
548
552
. 10.1126/science.aav9527
10.
Zhang
,
J.
,
2014
, “
Modeling the Impact of Wind Intensification on Antarctic Sea Ice Volume
,”
J. Clim.
,
27
(
1
), pp.
202
214
. 10.1175/JCLI-D-12-00139.1
11.
Irving
,
D.
,
Simmonds
,
I.
, and
Keay
,
K.
,
2010
, “
Mesoscale Cyclone Activity Over the Ice-Free Southern Ocean: 1999–2008
,”
J. Clim.
,
23
(
20
), pp.
5404
5420
. 10.1175/2010JCLI3628.1
12.
Bromwich
,
D. H.
,
Nicolas
,
J. P.
,
Monaghan
,
A. J.
,
Lazzara
,
M. A.
,
Keller
,
L. M.
,
Weidner
,
G. A.
, and
Wilson
,
A. B.
,
2013
, “
Central West Antarctica among the Most Rapidly Warming Regions on Earth
,”
Nat. Geosci.
,
6
(
2
), pp.
139
145
. 10.1038/ngeo1671
13.
Stopa
,
J. E.
, and
Cheung
,
K. F.
,
2014
, “
Intercomparison of Wind and Wave Data From the ECMWF Reanalysis Interim and the NCEP Climate Forecast System Reanalysis
,”
Ocean Modell.
,
75
, pp.
65
83
. 10.1016/j.ocemod.2013.12.006
14.
Campos
,
R. M.
, and
Guedes Soares
,
C.
,
2016
, “
Assessment of Three Wind Reanalyses in the North Atlantic Ocean
,”
J. Oper. Oceanogr.
,
10
(
1
), pp.
30
44
. 10.1080/1755876X.2016.1253328
15.
Campos
,
R. M.
, and
Guedes Soares
,
C.
,
2016
, “
Comparison and Assessment of Three Wave Hindcasts in the North Atlantic Ocean
,”
J. Oper. Oceanogr.
,
9
(
1
), pp.
26
44
. 10.1080/1755876X.2016.1200249
16.
Campos
,
R. M.
,
Alves
,
J. H. G. M.
,
Penny
,
S. G.
, and
Krasnopolsky
,
V.
,
2018
, “
Assessments of Surface Winds and Waves From NCEP Ensemble Forecast System
,”
AMS—Weather Forecasting
,
33
(
6
), pp.
1533
1546
. 10.1175/WAF-D-18-0086.1
17.
Challenor
,
P. G.
, and
Tokmakian
,
R. T.
,
1998
, “
Altimeter Measurements of the Volume Transport Through the Drake Passage
,”
Adv. Space Res.
,
22
(
11
), pp.
1549
1552
. 10.1016/S0273-1177(99)00071-X
18.
Koshlyakov
,
M. N.
,
Lisina
,
I. I.
,
Morozov
,
E. G.
, and
Tarakanov
,
R. Y.
,
2007
, “
Absolute Geostrophic Currents in the Drake Passage Based on Observations in 2003 and 2005
,”
Oceanology
,
47
(
4
), pp.
451
463
. 10.1134/S0001437007040029
19.
Heywood
,
K. J.
,
Collins
,
J. L.
,
Hughes
,
C. W.
, and
Vassie
,
I.
,
2007
, “
On the Detectability of Internal Tides in Drake Passage
,”
Deep Sea Res. Part I: Oceanogr. Res. Pap.
,
54
(
11
), pp.
1972
1984
. 10.1016/j.dsr.2007.08.002
20.
Zhang
,
B.
, and
Klinck
,
J. M.
,
2008
, “
The Effect of Antarctic Circumpolar Current Transport on the Frontal Variability in Drake Passage
,”
Dyn. Atmos. Oceans.
,
45
(
3–4
), pp.
208
228
. 10.1016/j.dynatmoce.2008.05.002
21.
Zhou
,
M.
,
Zhu
,
Y.
,
Dorland
,
R. D.
, and
Measures
,
C. I.
,
2010
, “
Dynamics of the Current System in the Southern Drake Passage
,”
Deep Sea Res. Part I: Oceanogr. Res. Pap.
,
55
(
9
), pp.
1039
1048
. 10.1016/j.dsr.2010.05.012
22.
Barré
,
N.
,
Provost
,
C.
,
Renault
,
A.
, and
Sennéchael
,
N.
,
2011
, “
Fronts, Meanders and Eddies in Drake Passage During the ANT-XXIII/3 Cruise in January–February 2006: A Satellite Perspective
,”
Deep Sea Res. Part II: Top. Stud. Oceanogr.
,
58
(
25–26
), pp.
2533
2554
. 10.1016/j.dsr2.2011.01.003
23.
Renault
,
A.
,
Provost
,
C.
,
Sennéchael
,
N.
,
Barré
,
N.
, and
Kartavtseff
,
A.
,
2011
, “
Two Full-Depth Velocity Sections in the Drake Passage in 2006—Transport Estimates
,”
Deep Sea Res. Part II: Top. Stud. Oceanogr.
,
58
(
25–26
), pp.
2572
2591
. 10.1016/j.dsr2.2011.01.004
24.
Provost
,
C.
,
Renault
,
A.
,
Barré
,
N.
,
Sennéchael
,
N.
,
Garçon
,
V.
,
Sudre
,
J.
, and
Huhn
,
O.
,
2011
, “
Two Repeat Crossings of Drake Passage in Austral Summer 2006: Short-Term Variations and Evidence for Considerable Ventilation of Intermediate and Deep Waters
,”
Deep Sea Res. Part II: Top. Stud. Oceanogr.
,
58
(
25–26
), pp.
2555
2571
. 10.1016/j.dsr2.2011.06.009
25.
Gladyshev
,
S. V.
, and
Sokov
,
A. V.
,
2014
, “
Underway Current Measurements in the Drake Passage
,”
Oceanology
,
54
(
1
), pp.
106
112
. 10.1134/S0001437014010056
26.
Artana
,
C.
,
Ferrari
,
R.
,
Bricaud
,
C.
,
Lellouche
,
J.-M.
,
Garric
,
G.
,
Sennéchael
,
N.
,
Lee
,
J.-H.
,
Park
,
Y.-H.
, and
Provost
,
C.
,
2019
, “
Twenty-five Years of Mercator Ocean Reanalysis GLORYS12 at Drake Passage: Velocity Assessment and Total Volume Transport
,”
Adv. Space Res.
10.1016/j.asr.2019.11.033
27.
Bozóki
,
T.
,
Czelnai
,
L.
,
Horicsányi
,
A.
,
Nyerges
,
A.
,
Pál
,
A.
,
Pálfy
,
J.
, and
Vincze
,
M.
,
2019
, “
Large-scale Ocean Circulation in the Southern Hemisphere with Closed and Open Drake Passage—A Laboratory Minimal Model Approach
,”
Deep Sea Res. Part II: Top. Stud. Oceanogr.
,
160
, pp.
16
24
. 10.1016/j.dsr2.2019.01.005
28.
Schmidt
,
K. M.
,
Swart
,
S.
,
Reason
,
C.
, and
Nicholson
,
S. A.
,
2017
, “
Evaluation of Satellite and Reanalysis Wind Products with In Situ Wave Glider Wind Observations in the Southern Ocean
,”
J. Atmos. Ocean Technol.
,
34
(
12
), pp.
2551
2568
. 10.1175/JTECH-D-17-0079.1
29.
Nygård
,
T.
,
Vihma
,
T.
,
Birnbaum
,
G.
,
Hartmann
,
J.
,
King
,
J.
,
Lachlan Cope
,
T.
,
Ladkin
,
R.
,
Lüpkes
,
C.
, and
Weiss
,
A.
,
2015
, “
Validation of Eight Atmospheric Reanalyses in the Antarctic Peninsula Region
,”
Q.J.R. Meteorol. Soc.
,
142
(
695
), pp.
684
692
. 10.1002/qj.2691
30.
Aguirre
,
C.
,
Rutllant
,
J. A.
, and
Falvey
,
M.
,
2017
, “
Wind Waves Climatology of the Southeast Pacific Ocean
,”
Int. J. Climatol.
,
37
(
12
), pp.
4288
4301
. 10.1002/joc.5084
31.
Lim
,
C. H.
,
Lettmann
,
K.
, and
Wolff
,
J.-O.
,
2013
, “
Numerical Study on Wave Dynamics and Wave-Induced bed Erosion Characteristics in Potter Cove, Antarctica
,”
Ocean Dyn.
,
63
(
11–12
), pp.
1151
1174
. 10.1007/s10236-013-0651-z
32.
Meylan
,
M. H.
,
Bennetts
,
L. G.
, and
Kohout
,
A. L.
,
2014
, “
In Situ Measurements and Analysis of Ocean Waves in the Antarctic Marginal ice Zone
,”
Geophys. Res. Lett.
,
41
(
14
), pp.
5046
5051
. 10.1002/2014GL060809
33.
Stopa
,
J. E.
,
Sutherland
,
P.
, and
Ardhuin
,
F.
,
2018
, “
Strong and Highly Variable Push of Ocean Waves on Southern Ocean sea ice
,”
Proc. Natl. Acad. Sci. USA
,
115
(
23
), pp.
5861
5865
. 10.1073/pnas.1802011115
34.
Campos
,
R. M.
,
Alves
,
J. H. G. M.
,
Guedes Soares
,
C.
,
Guimaraes
,
L. G.
, and
Parente
,
C. E.
,
2018
, “
Extreme Wind-Wave Modeling and Analysis in the South Atlantic Ocean
,”
Ocean Modell.
,
124
, pp.
75
93
. 10.1016/j.ocemod.2018.02.002
35.
Babanin
,
A. V.
,
Rogers
,
W. E.
,
Camargo
,
R.
,
Doble
,
M.
,
Durrant
,
T.
,
Filchuk
,
K.
,
Ewans
,
K.
,
Hemer
,
M.
,
Janssen
,
T.
,
Kelly-Gerreyn
,
B.
,
Machutchon
,
K.
,
McComb
,
P.
,
Qiao
,
F.
,
Schulz
,
E.
,
Skvortsov
,
A.
,
Thomson
,
J.
,
Vichi
,
M.
,
Violante-Carvalho
,
N.
,
Wang
,
D.
,
Waseda
,
T.
,
Williams
,
G.
, and
Young
,
I. R.
,
2019
, “
Waves and Swells in High Wind and Extreme Fetches, Measurements in the Southern Ocean
,”
Front. Mar. Sci.
,
6
. 10.3389/fmars.2019.00361
36.
Cavaleri
,
L.
,
Alves
,
J. H. G. M.
,
Ardhuin
,
F.
,
Babanin
,
A.
,
Banner
,
M.
,
Belibassakis
,
K.
,
Benoit
,
M.
,
Donelan
,
M.
,
Groeneweg
,
J.
,
Herbers
,
T. H. C.
,
Hwang
,
P.
,
Janssen
,
P. A. E. M.
,
Janssen
,
T.
,
Lavrenov
,
I. V.
,
Magne
,
R.
,
Monbaliu
,
J.
,
Onorato
,
M.
,
Polnikov
,
V.
,
Resio
,
D.
,
Rogers
,
W. E.
,
Sheremet
,
A.
,
McKee Smith
,
J.
,
Tolman
,
H. L.
,
Van Vledder
,
G.
,
Wolf
,
J.
, and
Young
,
I.
,
2007
,
Wave modelling – The state of the art
.
Progress Oceanogr.
,
75
(
4
), pp.
603
674
. 10.1016/j.pocean.2007.05.005
37.
Rogers
,
W. E.
,
Dykes
,
J. D.
,
Wang
,
D.
,
Carroll
,
S. N.
, and
Watson
,
K.
,
2012
, Validation Test Report for WAVEWATCH III. NRL Memorandum Report 7320-12-9425, 75 p.
38.
Mentaschi
,
L.
,
Besio
,
G.
,
Cassola
,
F.
, and
Mazzino
,
A.
,
2013
, “
Problems in RMSE-Based Wave Model Validations
,”
Ocean Modell.
,
72
, pp.
53
58
. 10.1016/j.ocemod.2013.08.003
39.
Tolman
,
H. L.
,
2014
. User Manual and System Documentation of WAVEWATCH III Version 4.18.
The WAVEWATCH III Development Group
, EMC/MMAB/NCEP/NOAA, MMAB Contribution No. 316.
40.
Zängl
,
G.
,
Reinert
,
D.
,
Rípodas
,
P.
, and
Baldauf
,
M.
,
2015
, “
The ICON (ICOsahedral Non-Hydrostatic) Modelling Framework of DWD and MPI-M: Description of the non-Hydrostatic Dynamical Core
,”
Q.J.R. Meteorol. Soc.
,
141
(
687
), pp.
563
579
. 10.1002/qj.2378
41.
Ardhuin
,
F.
,
Rogers
,
E.
,
Babanin
,
A. V.
,
Filipot
,
J.-F.
,
Magne
,
R.
,
Roland
,
A.
,
van der Westhuysen
,
A.
,
Queffeulou
,
P.
,
Lefevre
,
J.-M.
,
Aouf
,
L.
, and
Collard
,
F.
,
2010
, “
Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation
,”
J. Phys. Oceanogr.
,
40
(
9
), pp.
1917
1941
. 10.1175/2010JPO4324.1
42.
Bidlot
,
J. R.
,
2017
, “
Twenty-one Years of Wave Forecast Verification
,”
ECMWF Newsl.
,
150
, pp.
31
36
. 10.21957/t4znuhb842
43.
Lorenz
,
E. N.
,
1963
, “
The Predictability of Hydrodynamic Flow
,”
Trans. NY Acad. Sci., Series II
,
25
, pp.
409
432
. 10.1111/j.2164-0947.1963.tb01464.x
44.
Reijmer
,
C. H.
,
van Meijgaard
,
E.
, and
van den Broeke
,
M. R.
,
2005
, “
Evaluation of Temperature and Wind Over Antarctica in a Regional Atmospheric Climate Model Using 1 Year of Automatic Weather Station Data and Upper air Observations
,”
J. Geophys. Res.
,
110
(
D4
), p.
D04103
. 10.1029/2004JD005234
45.
Durrant
,
T. H.
,
Woodcock
,
F.
, and
Greenslade
,
D. J. M.
,
2009
, “
Consensus Forecasts of Modelled Wave Parameters
,”
Weather Forecast
,
24
(
2
), pp.
492
503
. 10.1175/2008WAF2222143.1
46.
Zieger
,
S.
,
Greenslade
,
D.
, and
Kepert
,
J. D.
,
2018
, “
Wave Ensemble Forecast System for Tropical Cyclones in the Australian Region
,”
Ocean Dyn.
,
68
(
4–5
), pp.
603
625
. 10.1007/s10236-018-1145-9
47.
Campos
,
R. M.
,
Krasnopolsky
,
V.
,
Alves
,
J. H. G. M.
, and
Penny
,
S. G.
,
2020
, “
Improving NCEP’s Global-Scale Wave Ensemble Averages Using Neural Networks
,”
Ocean Modell.
,
149
, p.
101617
. 10.1016/j.ocemod.2020.101617
48.
Campos
,
R. M.
,
Alves
,
J. H. G. M.
,
Penny
,
S. G.
, and
Krasnopolsky
,
V.
,
2019
, “
Global Assessments of the NCEP Ensemble Forecast System Using Altimeter Data
,”
Ocean Dyn.
,
70
(
3
), pp.
405
419
. 10.1007/s10236-019-01329-4
49.
Campos
,
R. M.
,
Krasnopolsky
,
V.
,
Alves
,
J. H. G. M.
, and
Penny
,
S. G.
,
2019
, “
Nonlinear Wave Ensemble Averaging in the Gulf of Mexico Using Neural Networks
,”
J. Atmos. Oceanic Technol.
,
36
(
1
), pp.
113
127
. 10.1175/JTECH-D-18-0099.1
You do not currently have access to this content.