Abstract

In this article, a coupled model is proposed for wave interaction with a pair of submerged floating tunnels in the presence of an array of bottom-standing trapezoidal porous breakwaters. The theory of Sollitt and Cross is adopted to govern the fluid flow inside the porous medium. For constant water-depth, the eigenfunction expansion method is employed, whereas for varying water-depth, the eigenfunction expansion method along with the mild-slope approximation is employed. The solutions, thus derived, are matched at the shared boundaries under defined physical conditions. First, the performance of a single breakwater of impermeable and permeable type in reducing wave forces on tunnels is analyzed. Next, the performance of two and three submerged breakwaters is studied. The reflection and transmission coefficients of waves are high in the absence of the submerged breakwater and in the presence of an impermeable breakwater. These coefficients significantly reduce in the presence of the submerged porous breakwater. As a result, the horizontal and vertical forces acting on bridges and tunnels are substantially subsided. Wave forces on tunnels reduce with an increase in the angle of incidence. Multiple porous breakwaters show better performance in mitigating wave forces on tunnels. Higher wave force on tunnels is noticed in intermediate water-depth. The findings can enhance the knowledge of submerged porous breakwaters’ performance in reducing wave loads on bridges and tunnels.

References

1.
McIver
,
P.
,
1986
, “
Wave Forces on Adjacent Floating Bridges
,”
Appl. Ocean Res.
,
8
(
2
), pp.
67
75
. 10.1016/S0141-1187(86)80001-3
2.
Qu
,
K.
,
Tang
,
H. S.
,
Agrawal
,
A.
,
Cai
,
Y.
, and
Jiang
,
C. B.
,
2018
, “
Numerical Investigation of Hydrodynamic Load on Bridge Deck Under Joint Action of Solitary Wave and Current
,”
Appl. Ocean Res.
,
75
, pp.
100
116
. 10.1016/j.apor.2018.02.020
3.
Qu
,
K.
,
Sun
,
W. Y.
,
Tang
,
H. S.
,
Jiang
,
C. B.
,
Deng
,
B.
, and
Chen
,
J.
,
2019
, “
Numerical Study on Hydrodynamic Load of Real-World Tsunami Wave At Highway Bridge Deck Using a Coupled Modeling System
,”
Ocean Eng.
,
192
, p.
106486
. 10.1016/j.oceaneng.2019.106486
4.
Kunisu
,
H.
,
2010
, “
Evaluation of Wave Force Acting on Submerged Floating Tunnels
,”
Procedia. Eng.
,
4
, pp.
99
105
. 10.1016/j.proeng.2010.08.012
5.
Mondal
,
R.
, and
Takagi
,
K.
,
2017
, “
Wave Scattering by a Fixed Submerged Platform Over a Step Bottom
,”
Proc. Inst. Mech. Eng., Part M: J. Eng. Maritime Environ.
,
233
(
1
), pp.
1
15
.
6.
Singla
,
S.
,
Martha
,
S. C.
, and
Sahoo
,
T.
,
2018
, “
Mitigation of Structural Responses of a Very Large Floating Structure in the Presence of Vertical Porous Barrier
,”
Ocean Eng.
,
165
, pp.
505
527
. 10.1016/j.oceaneng.2018.07.045
7.
Sharma
,
M.
,
Kaligatla
,
R. B.
, and
Sahoo
,
T.
,
2020
, “
Wave Interaction with a Submerged Floating Tunnel in the Presence of a Bottom Mounted Submerged Porous Breakwater
,”
Appl. Ocean Res.
,
96
, pp.
1
12
. 10.1016/j.apor.2020.102069
8.
Sun
,
W. Y.
,
Qu
,
K.
,
Kraatz
,
S.
,
Deng
,
B.
, and
Jianga
,
C. B.
,
2020
, “
Numerical Investigation on Performance of Submerged Porous Breakwater to Mitigate Hydrodynamic Loads of Coastal Bridge Deck Under Solitary Wave
,”
Ocean Eng.
,
213
, pp.
1
19
. 10.1016/j.oceaneng.2020.107660
9.
Tabssum
,
S.
,
Kaligatla
,
R. B.
, and
Sahoo
,
T.
,
2020
, “
Surface Gravity Wave Interaction With a Partial Porous Breakwater in the Presence of Bottom Undulation
,”
J. Eng. Mech.
,
146
(
9
), pp.
1
18
. 10.1061/(ASCE)EM.1943-7889.0001818
10.
Sollitt
,
C. K.
, and
Cross
,
R. H.
,
1972
, “
Wave Transmission Through Permeable Breakwaters
,”
13th International Conference on Coastal Engineering, ASCE
,
Canada
,
Jan. 29
.
11.
Dattatri
,
J.
,
Raman
,
H.
, and
Shankar
,
N. J.
,
1978
, “Performance Characteristics of Submerged Breakwaters,”
Coastal Engineering
,
Hamburg, Germany
, pp.
2153
2171
.
12.
Dalrymple
,
R. A.
,
Losada
,
M. A.
, and
Martin
,
P. A.
,
1991
, “
Reflection and Transmission From Porous Structures Under Oblique Wave Attack
,”
J. Fluid. Mech.
,
224
, pp.
625
644
. 10.1017/S0022112091001908
13.
Losada
,
I. J.
,
Silva
,
R.
, and
Losada
,
M. A.
,
1996
, “
3-D Non-Breaking Regular Wave Interaction With Submerged Breakwater
,”
Coast. Eng.
,
28
(
1–4
), pp.
229
248
. 10.1016/0378-3839(96)00019-1
14.
Silva
,
R.
,
Salles
,
P.
, and
Palacio
,
A.
,
2002
, “
Linear Waves Propagating Over a Rapidly Varying Finite Porous Bed
,”
Coast. Eng.
,
44
(
3
), pp.
239
260
. 10.1016/S0378-3839(01)00035-7
15.
Mei
,
C. C.
, and
Black
,
J. L.
,
1969
, “
Scattering of Surface Waves by Rectangular Obstacles in Waters of Finite Depth
,”
J. Fluid. Mech.
,
38
(
3
), pp.
499
511
. 10.1017/S0022112069000309
16.
Black
,
J. L.
,
Mei
,
C. C.
, and
Bray
,
M. C. G.
,
1971
, “
Radiation and Scattering of Water Waves by Rigid Bodies
,”
J. Fluid. Mech.
,
46
(
1
), pp.
151
164
. 10.1017/S0022112071000454
17.
Bai
,
K. J.
,
1975
, “
Diffraction of Oblique Waves by An Infinite Cylinder
,”
J. Fluid. Mech.
,
68
(
3
), pp.
513
535
. 10.1017/S0022112075001802
18.
Kanoria
,
M.
,
Dolai
,
D. P.
, and
Mandal
,
B. N.
,
1999
, “
Water-Wave Scattering by Thick Vertical Barriers
,”
J. Eng. Math.
,
35
, pp.
361
384
. 10.1023/A:1004392622976
19.
Drimer
,
N.
,
Agnon
,
Y.
, and
Stiassnie
,
M.
,
1992
, “
A Simplified Analytical Model for a Floating Breakwater in Water of Finite Depth
,”
Appl. Ocean Res.
,
14
(
1
), pp.
33
41
. 10.1016/0141-1187(92)90005-5
20.
Abul-Azm
,
A. G.
, and
Gesraha
,
M. R.
,
2000
, “
Approximation to the Hydrodynamics of Floating Pontoons Under Oblique Waves
,”
Ocean Eng.
,
27
(
4
), pp.
365
384
. 10.1016/S0029-8018(98)00057-2
21.
Paik
,
I. Y.
,
Oh
,
C. K.
,
Kwon
,
J. S.
, and
Chang
,
S. P.
,
2004
, “
Analysis of Wave Force Induced Dynamic Response of Submerged Floating Tunnel
,”
KSCE J. Civil Eng.
,
8
(
5
), pp.
543
549
. 10.1007/BF02899580
22.
Zheng
,
Y. H.
,
You
,
Y. G.
, and
Shen
,
Y. M.
,
2004
, “
On the Radiation and Diffraction of Water Waves by a Rectangular Buoy
,”
Ocean Eng.
,
31
(
8–9
), pp.
1063
1082
. 10.1016/j.oceaneng.2003.10.012
23.
Zheng
,
Y. H.
,
Shen
,
Y. M.
, and
Tang
,
J.
,
2007
, “
Radiation and Diffraction of Linear Water Waves by An Infinitely Long Submerged Rectangular Structure Parallel to a Vertical Wall
,”
Ocean Eng.
,
34
(
1
), pp.
69
82
. 10.1016/j.oceaneng.2005.12.004
24.
Belibassakis
,
K. A.
,
2008
, “
A Boundary Element Method for the Hydrodynamic Analysis of Floating Bodies in Variable Bathymetry Regions
,”
Eng. Anal. Bound. Elem.
,
32
(
10
), pp.
796
810
. 10.1016/j.enganabound.2008.02.003
25.
Bautista
,
E.
, and
Medina-Rodríguez
,
A.
,
2016
, “
Shoaling of Long Water Waves by Its Interaction with a Submerged Breakwater of Wavy Surface
,”
Proceedings of the 11th International Conference on Engineering Sciences
,
Madrid, Spain
.
26.
Medina-Rodríguez
,
A.
,
Bautista
,
E.
, and
Méndez
,
F.
,
2016
, “
Asymptotic Analysis of the Interaction Between Linear Long Waves and a Submerged Floating Breakwater of Wavy Surfaces
,”
Appl. Ocean Res.
,
59
, pp.
345
365
. 10.1016/j.apor.2016.06.002
27.
Manisha, Kaligatla
,
R. B.
, and
Sahoo
,
T.
,
2019
, “
Effect of Bottom Undulation for Mitigating Wave Induced Forces on a Floating Bridge
,”
Wave Motion
,
89
, pp.
166
184
. 10.1016/j.wavemoti.2019.03.007
28.
Ou Yang
,
H. T.
,
Huang
,
L. H.
, and
Hwang
,
W. S.
,
1997
, “
The Interference of a Semi-Submerged Obstacle on the Porous Breakwater
,”
Appl. Ocean Res.
,
19
(
5–6
), pp.
263
273
. 10.1016/S0141-1187(97)00035-7
29.
Cho
,
Il-Hyoung.
,
2016
, “
Transmission Coefficients of a Floating Rectangular Breakwater With Porous Side Plates
,”
Int. J. Naval Archit. Ocean Eng.
,
8
(
1
), pp.
53
65
. 10.1016/j.ijnaoe.2015.10.002
30.
Qiao
,
W.
,
Wang
,
K. H.
,
Duan
,
W.
, and
Sun
,
Y.
,
2018
, “
Analytical Model of Wave Loads and Motion Responses for a Floating Breakwater System with Attached Dual Porous Side Walls
,”
Math. Probl. Eng.
,
2018
(
1
), pp.
1
14
. 10.1155/2018/1295986
31.
Williams
,
A. N.
, and
Abul-Azm
,
A. G.
,
1997
, “
Dual Pontoon Floating Breakwater
,”
Ocean Eng.
,
24
(
5
), pp.
465
478
. 10.1016/S0029-8018(96)00024-8
32.
Liu
,
Y.
, and
Li
,
H.-J.
,
2013
, “
A New Semi-Analytical Solution for Gap Resonance Between Twin Rectangular Boxes
,”
Proc. Inst. Mech. Eng., Part M: J. Eng. Maritime Environ.
,
228
(
1
), pp.
3
16
.
33.
Ning
,
D.-Z.
,
Zhaoa
,
X.-L
,
Zhaoa
,
M.
,
Hannc
,
M.
, and
Kang
,
H.-G.
,
2017
, “
Analytical Investigation of Hydrodynamic Performance of a Dual Pontoon WEC-type Breakwater
,”
Appl. Ocean Res.
,
65
, pp.
102
111
. 10.1016/j.apor.2017.03.012
34.
Porter
,
D.
, and
Staziker
,
D. J.
,
1995
, “
Extensions of the Mild-Slope Equation
,”
J. Fluid. Mech.
,
300
, pp.
367
382
. 10.1017/S0022112095003727
35.
Kar
,
P.
,
Koley
,
S.
, and
Sahoo
,
T.
,
2018
, “
Scattering of Surface Gravity Waves Over a Pair of Trenches
,”
Appl. Math. Model.
,
62
, pp.
1
27
. 10.1016/j.apm.2018.05.015
36.
Kar
,
P.
,
Sahoo
,
T.
, and
Behera
,
H.
,
2019
, “
Effect of Bragg Scattering Due to Bottom Undulation on a Floating Dock
,”
Wave Motion
,
90
, pp.
121
138
. 10.1016/j.wavemoti.2019.04.011
37.
Liu
,
H-W.
,
Zeng
,
H-D.
, and
Huang
,
H-D.
,
2020
, “
Bragg Resonant Reflection of Surface Waves From Deep Water to Shallow Water by a Finite Array of Trapezoidal Bars
,”
Appl. Ocean Res.
,
94
, pp.
1
15
. 10.1016/j.apor.2019.101976
You do not currently have access to this content.