This paper analyses and evaluates the variability of seismic demand and capacity of a case study jacket offshore platform considering different sources of uncertainty. The aleatoric uncertainty due to variability of near-fault ground motions, as well as uncertain properties of the damping ratio, material elastic modulus, material yield strength, mass, and gravity load have been investigated. The main aim of this study is to pursue which sources of the uncertainty considerably affect the seismic response of the platform. To this end, the sensitivity analysis was conducted not only in the particular earthquake level, but also in all other ranges of intensity using incremental dynamic analysis (IDA) with a special focus on the seismic collapse fragility. In order to reduce the number of simulations, the Latin hypercube sampling (LHS) scheme has been utilized as an efficient sampling procedure to combine the effects of modeling random variables. The collapse fragility curves are derived for each of the model realizations created with LHS technique. Thereafter, the summarized random fragility curve is compared with the deterministic mean parameter model fragility curve. It is found that the uncertainty in the mass and gravity load on the platform are the most influential variables, which can notably alter the IDA and collapse fragility curves. Furthermore, the random combination of the considered sources of uncertainty shifts the median of collapse fragility away from the mean parameter model collapse fragility. Overall, the effects of the uncertainties do not lead to notable changes in the summarized collapse fragility curve.

References

1.
Lemaire
,
M.
,
Chateauneuf
,
A.
, and
Mitteau
,
J. C.
,
2005
,
Structural Reliability
,
Wiley
,
New York
, Chap. 8.
2.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
3.
Baker
,
J. W.
, and
Cornell
,
C. A.
,
2003
, “Uncertainty Specification and Propagation for Loss Estimation Using FOSM Methods,” University of California, Berkeley, Berkeley, CA, PEER Report No.
2003/07
.http://peer.berkeley.edu/research/peertestbeds/Cct/Baker%20Cornell%20ICASP%20manuscript.pdf
4.
Ibarra
,
L.
,
2003
, “
Global Collapse of Frame Structures Under Seismic Excitations
,”
Ph.D. dissertation
, Stanford University, Stanford, CA.https://stacks.stanford.edu/file/druid:dj885ym2486/TR152_Ibarra.pdf
5.
Haselton
,
C. B.
,
2006
, “
Assessing Seismic Collapse Safety of Modern Reinforced Concrete Moment-Frame Buildings
,”
Ph.D. dissertation
, Stanford University, Stanford, CA.http://peer.berkeley.edu/publications/peer_reports/reports_2007/webR1_PEER708_HASELTONdeierlein.pdf
6.
Porter
,
K. A.
,
Beck
,
J. L.
, and
Shaikhutdinov
,
R. V.
,
2002
, “
Sensitivity of Building Loss Estimates to Major Uncertain Variables
,”
Earthquake Spectra
,
18
(
4
), pp.
719
43
.
7.
Eschenbach
,
T. G.
,
1992
, “
Spiderplots Versus Tornado Diagrams for Sensitivity Analysis
,”
Decis. Risk Anal.
,
22
(
6
), pp.
40
46
.
8.
Lee
,
T. H.
, and
Mosalam
,
K. M.
,
2005
, “
Seismic Demand Sensitivity of Reinforced Concrete Shearwall Building Using FOSM Method
,”
Earthquake Eng. Struct. Dyn.
,
34
(
17
), pp.
1719
1736
.
9.
Binici
,
B.
, and
Mosalam
,
K. M.
,
2007
, “
Analysis of Reinforced Concrete Columns Retrofitted With Fiber Reinforced Polymer Lamina
,”
Compos. Part B: Eng.
,
38
(
2
), pp.
265
276
.
10.
Talaat
,
M. M.
, and
Mosalam
,
K. M.
,
2008
, “Computational Modeling of Progressive Collapse in Reinforced Concrete Frame Structures,” Pacific Earthquake Engineering Research Center (PEER), University of California, Berkeley, Berkeley, CA, Report No.
PEER-2007/10
.http://peer.berkeley.edu/publications/peer_reports/reports_2007/webPEER710_R_TALAATmosalam.pdf
11.
Vamvatsikos
,
D.
, and
Cornell
,
C. A.
,
2002
, “
Incremental Dynamic Analysis
,”
Earthquake Eng. Struct. Dyn.
,
31
(
3
), pp.
491
514
.
12.
Liel
,
A. B.
,
Haselton
,
C. B.
,
Deierlein
,
G. G.
, and
Baker
,
J. W.
,
2009
, “
Incorporating Modeling Uncertainties in the Assessment of Seismic Collapse Risk of Buildings
,”
Struct. Saf.
,
31
(
2
), pp.
197
211
.
13.
Vamvatsikos
,
D.
, and
Fragiadakis
,
M.
,
2010
, “
Incremental Dynamic Analysis for Estimating Seismic Performance Sensitivity and Uncertainty
,”
Earthquake Eng. Struct. Dyn.
,
39
(
2
), pp.
141
163
.
14.
Olsson
,
A.
,
Sandberg
,
G.
, and
Dahlblom
,
O.
,
2003
, “
On Latin Hypercube Sampling for Structural Reliability Analysis
,”
Struct. Saf.
,
25
(
1
), pp.
47
68
.
15.
Golafshani
,
A. A.
,
Ebrahimian
,
H.
,
Bagheri
,
V.
, and
Holmas
,
T.
,
2011
, “
Assessment of Offshore Platforms Under Extreme Waves by Probabilistic Incremental Wave Analysis
,”
J. Constr. Steel. Res.
,
67
(
5
), pp.
759
69
.
16.
Ajamy
,
A.
,
Zolfaghari
,
M. R.
,
Asgarian
,
B.
, and
Ventura
,
C. E.
,
2014
, “
Probabilistic Seismic Analysis of Offshore Platforms Incorporating Uncertainty in Soil–Pile–Structure Interactions
,”
J. Constr. Steel Res.
,
101
, pp.
265
279
.
17.
El-Din
,
M. N.
, and
Kim
,
J.
,
2014
, “
Sensitivity Analysis of Pile-Founded Fixed Steel Jacket Platforms Subjected to Seismic Loads
,”
Ocean Eng.
,
85
, pp.
1
11
.
18.
Hezarjaribi
,
M.
,
Bahaari
,
M. R.
,
Ebrahimian
,
H.
, and
Bagheri
,
V.
,
2013
, “
Sensitivity Analysis of Jacket-Type Offshore Platforms Under Extreme Waves
,”
J. Constr. Steel Res.
,
83
, pp.
147
155
.
19.
Mazzoni
,
S.
,
McKenna
,
F.
,
Scott
,
M.
, and
Fenves
,
G.
,
2007
, “Open System for Earthquake Engineering Simulation (OpenSEES)—OpenSEES Command Language Manual,” University of California, Berkeley, Berkeley, CA.
20.
Spacone
,
E.
,
Filippou
,
F. C.
, and
Taucer
,
F. F.
,
1996
, “
Fiber Beam Column Model for Nonlinear Analysis of RC Frames—I: Formulation
,”
Earthquake Eng. Struct. Dyn.
,
25
(
7
), pp.
711
725
.
21.
Menegotto
,
M.
, and
Pinto
,
P.
,
1973
, “
Method of Analysis for Cyclically Loaded Reinforced Concrete Plane Frame Including Changes in Geometry and Non-Elastic Behavior of Elements Under Combined Normal Force and Bending
,”
IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads
, Lisbon, Portugal, pp.
15
22
.https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj_iqi9ovLXAhVG7yYKHWpkAk0QFggmMAA&url=http%3A%2F%2Fwww.e-periodica.ch%2Fcntmng%3Fpid%3Dbse-re-001%3A1973%3A13%3A%3A9&usg=AOvVaw1yiRMEjnlGQEK_6CgexxPO
22.
De Souza
,
R.
,
2000
, “
Forced-Based Finite Element for Large Displacement Inelastic Analysis of Frames
,”
Ph.D. thesis
, University of California, Berkeley, Berkeley, CA.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.467.1617&rep=rep1&type=pdf
23.
Asgarian
,
B.
,
Aghakouchak
,
A. A.
, and
Bea
,
R. G.
,
2005
, “
Inelastic Post Buckling and Cyclic Behavior of Tubular Braces
,”
ASME J. Offshore Mech. Arct. Eng.
,
127
(
3
), pp.
256
262
.
24.
Asgarian
,
B.
,
Aghakouchack
,
A. A.
, and
Bea
,
R. G.
,
2006
, “
Non-Linear Analysis of Jacket Type Offshore Platforms Using Fiber Elements
,”
ASME J. Offshore Mech. Arct. Eng.
,
128
(
3
), pp.
224
232
.
25.
Honarvar
,
M. R.
,
Bahari
,
M. R.
,
Asgarian
,
B.
, and
Alanjari
,
P.
,
2008
, “
Cyclic Inelastic Behavior and Analytical Modeling of Pile Leg Interaction in Jacket Type Offshore Platform
,”
Appl. Ocean Res.
,
29
(
4
), pp.
167
179
.
26.
Alanjari
,
P.
,
Asgarian
,
B.
,
Bahaari
,
M. R.
, and
Honarvar
,
M. R.
,
2009
, “
On the Energy Dissipation of Jacket Type Offshore Platforms With Different Pile–Leg Interactions
,”
Appl. Ocean Res.
,
31
(
2
), pp.
82
89
.
27.
Uriz
,
P.
,
Filippou
,
F. C.
, and
Mahin
,
S. A.
,
2008
, “
Model for Cyclic Inelastic Buckling of Steel Braces
,”
ASCE J. Struct. Eng.
,
134
(
4
), pp.
619
628
.
28.
Uriz
,
P.
, and
Mahin
,
S. A.
,
2008
, “
Toward Earthquake-Resistant Design of Concentrically Braced Steel-Frame Structures
,” Pacific Earthquake Engineering Research Center,
University of California
,
Berkeley, Berkeley, CA
, Report No.
2008/08
.https://peer.berkeley.edu/publications/peer_reports/reports_2008/web_PEER808_URIZMahin.pdf
29.
Yang
,
F.
,
Mahin
,
S. A.
, and
Uriz
,
P.
,
2005
, “Limiting Net Section Failure in Slotted HSS Braces,” Structural Steel Education Council, Moraga, CA.
30.
Memarpour
,
M. M.
,
Kimiaei
,
M.
,
Shayanfar
,
M.
, and
Khanzadi
,
M.
,
2012
, “
Cyclic Lateral Response of Pile Foundations in Offshore Platforms
,”
Comput. Geotechnics
,
42
, pp.
180
192
.
31.
Boulanger
,
R. W.
,
Curras
,
C.
,
Kutter
,
B. L.
,
Wilson
,
D. W.
, and
Abghari
,
A.
,
1999
, “
Seismic Soil Pile-Structure Interaction Experiments and Analyses
,”
ASCE J. Geotech. Geoenviron. Eng.
,
125
(
9
), pp.
750
759
.
32.
Yang
,
Z.
,
Elgamal
,
A.
, and
Parra
,
E.
,
2003
, “
Computational Model for Cyclic Mobility and Associated Shear Deformation
,”
ASCE J. Geotech. Geoenviron. Eng.
,
129
(
12
), pp.
1119
1127
.
33.
Asgarian
,
B.
,
Zarrin
,
M.
, and
Boroumand
,
M.
,
2013
, “
Nonlinear Dynamic Analysis of Pile Foundation Subjected to Strong Ground Motion Using Fiber Elements
,”
Int. J. Marit. Technol.
,
1
(
1
), pp.
35
46
.http://ijmt.ir/article-1-195-en.html
34.
Zarrin
,
M.
,
Asgarian
,
B.
, and
Foulad
,
R.
,
2018
, “
A Review on Factors Affecting Seismic Pile Response Analysis: A Parametric Study
,”
J. Numer. Methods Civil Eng.
(accepted).
35.
Asgarian
,
B.
, and
Ajamy
,
A.
,
2010
, “
Seismic Performance of Jacket Type Offshore Platforms Through Incremental Dynamic Analysis
,”
ASME J. Offshore Mech. Arct. Eng.
,
132
(
3
), p.
031301
.
36.
Sharifian
,
H.
,
Bargi
,
K.
, and
Zarrin
,
M.
,
2015
, “
Ultimate Strength of Fixed Offshore Platforms Subjected to Near-Fault Earthquake Ground Vibration
,”
Shock Vib.
,
2015
, p.
841870
.
37.
FEMA
,
2000
, “Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment Frame Buildings,” Federal Emergency Management Agency, Washington, DC, Report No.
FEMA-351
.http://www.nehrp.gov/pdf/fema351.pdf
38.
Charney
,
F. A.
,
2008
, “
Unintended Consequences of Modeling Damping in Structures
,”
ASCE J. Struct. Eng.
,
134
(
4
), pp.
581
592
.
39.
HSE
,
2003
, “Component-Based Calibration of North West European Annex Environmental Load Factors for the ISO Fixed Steel Offshore Structures Code 19902,” Health and Safety Executive, Merseyside, UK, Report No.
088
.http://www.hse.gov.uk/research/rrpdf/rr088.pdf
40.
JCSS
,
2001
, “Probabilistic Model Code—Part 1: Basis of Design (12th Draft),” Joint Committee on Structural Safety, Technical University of Denmark, Kongens Lyngby, Denmark, Standard No.
JCSS-OSTL/DIA/VROU-10-11-2000
.https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiSjM70v_DXAhXFYt8KHayLDm0QFggmMAA&url=http%3A%2F%2Fwww.jcss.byg.dtu.dk%2F-%2Fmedia%2FSubsites%2Fjcss%2Fenglish%2Fpublications%2Fprobabilistic_model_code%2Fdesbasis2a.ashx%3Fla%3Dda&usg=AOvVaw0WYMSyqOhRBTqAZeaDy1B9
41.
Kim
,
J.
,
Park
,
J. H.
, and
Lee
,
T. H.
,
2011
, “
Sensitivity Analysis of Steel Buildings Subjected to Column Loss
,”
Eng. Struct
,
33
(
2
), pp.
421
432
.
42.
Skallerud
,
B.
, and
Amdahl
,
J.
,
2002
,
Nonlinear Analysis of Offshore Structures
,
Research Studies Press Ltd
,
Baldock, UK
, Chap. 3.
43.
Padget
,
J. E.
, and
Roches
,
R. D.
,
2007
, “
Sensitivity of Seismic Response and Fragility to Parameter Uncertainty
,”
ASCE J. Struct. Eng.
,
133
(
12
), pp.
1710
1718
.
44.
API
,
2000
,
Recommended Practice for Planning, Design and Constructing Fixed Offshore Platforms—Working Stress Design
,
American Petroleum Institute
,
Washington, DC
.
45.
AISC
,
1989
,
Specification for Structural Steel Buildings: Allowable Stress Design and Plastic Design
,
American Institute of Steel Construction
,
Chicago, IL
.
46.
Baker
,
J. W.
,
Shahi
,
S. K.
, and
Jayaram
,
N.
,
2011
, “New Ground Motion Selection Procedures and Selected Motions for the PEER Transportation Research Program,” Pacific Earthquake Engineering Research Center, University of California, Berkeley, Berkeley, CA, PEER Report No.
2011/3
.http://mfile.narotama.ac.id/files/Umum/JURNAR%20STANFORD/New%20ground%20motion%20selection%20procedures%20and%20selected%20motions%20for%20the%20PEER%20transportation%20research%20program.pdf
47.
Baker
,
J. W.
, and
Cornell
,
C. A.
,
2008
, “
Vector-Valued Intensity Measures for Pulse-Like Near-Fault Ground Motions
,”
Eng. Struct.
,
30
(
4
), pp.
1048
1057
.
48.
Alavi
,
B.
, and
Krawinkler
,
H.
,
2001
, “Effects of Near-Fault Ground Motions on Frame Structures,” Blume Center, Stanford, CA, Report No.
138
.https://stacks.stanford.edu/file/druid:cx534fy3768/TR138_Alavi.pdf
49.
Benjamin
,
J. R.
, and
Cornell
,
C. A.
,
1970
,
Probability, Statistics and Decision for Civil Engineers
,
McGraw-Hill
,
New York
, Chap. 4.
You do not currently have access to this content.