Improving the efficacy of the pilot remotely operated vehicle (ROV) interaction through extensive training is paramount in reducing the duration, and thus expense, of ROV deployments. To complete training without sacrificing operational windows, ROV simulators can be used. Since the ROV tether, which provides power and telemetry, will at times dominate the ROV motion, the tether must be accurately modeled over the full duration of a simulated ROV maneuver. One aspect of the tether dynamics that remains relatively untouched is the modeling of tether self-contact, contact with other tethers, or entanglement. The aim of this work is to present a computationally efficient and accurate method of detecting tether collisions. To this end, a combinatorial global optimization method is first used to determine the approximate separation distance minima locations. Then, a local optimization scheme is used to find the exact separation distances and the locations of the closest points. The first combinatorial stage increases the speed at which the minima can be found. The minimum separation distance information and its change with respect to time can then be used to continuously determine whether a collision has occurred. If a collision is detected, a contact force is calculated from the interference geometry and applied at the collision site.

1.
Williams
,
P.
, 2006, “
Towing and Winch Control Strategy for Underwater Vehicles in Sheared Currents
,”
Int. J. Offshore Polar Eng.
1053-5381,
16
(
3
), pp.
218
227
.
2.
M. A.
Grosenbaugh
, 2007, “
Transient Behavior of Towed Cable Systems During Ship Turning Maneuvers
,”
Ocean Eng.
0029-8018,
34
(
11-12
), pp.
1532
1542
.
3.
Sanders
,
J. V.
, 1982, “
A Three Dimensional Dynamic Analysis of a Towed System
,”
Ocean Eng.
0029-8018,
9
(
5
), pp.
483
499
.
4.
Chapman
,
D. A.
, 1984, “
Towed Cable Behaviour During Ship Turning Maneuvers
,”
Ocean Eng.
0029-8018,
11
(
4
), pp.
327
361
.
5.
Buckham
,
B. J.
,
Nahon
,
M. N.
,
Seto
,
M.
,
Zhao
,
X.
, and
Lambert
,
C.
, 2003, “
Dynamics Simulation of a Towed Underwater System: Part I. Model Development
,”
Ocean Eng.
0029-8018,
30
(
4
), pp.
453
470
.
6.
Lambert
,
C.
,
Nahon
,
M.
,
Buckham
,
B.
, and
Seto
,
M.
, 2003, “
Dynamics Simulation of a Towed Underwater System: Part II Model Validation and Turn Maneuver Optimization
,”
Ocean Eng.
0029-8018,
30
(
4
), pp.
471
485
.
7.
Ablow
,
C. M.
, and
Schechter
,
S.
, 1983, “
Numerical Simulation of Undersea Cable Dynamics
,”
Ocean Eng.
0029-8018,
10
(
6
), pp.
443
457
.
8.
Gobat
,
J. I.
, and
Grosenbaugh
,
M. A.
, 2001, “
Dynamics in the Touchdown Regions of Catenary Moorings
,”
Int. J. Offshore Polar Eng.
1053-5381,
11
(
4
), pp.
273
281
.
9.
Chai
,
Y. T.
,
Varyani
,
K. S.
, and
Barltrop
,
N. D. P.
, 2002, “
Three-Dimensional Lump-Mass Formulation of a Catenary Riser With Bending, Torsion and Irregular Seabed Interaction Effect
,”
Ocean Eng.
0029-8018,
29
, pp.
1503
1525
.
10.
Gatti-Bono
,
C.
, and
Perkins
,
N. C.
, 2004, “
Numerical Simulations of Cable/Seabed Interaction
,”
Int. J. Offshore Polar Eng.
1053-5381,
14
(
2
), pp.
118
124
.
11.
Stump
,
D. M.
, 2000, “
The Hockling of Cables: A Problem in Shearable and Extensible Rods
,”
Int. J. Solids Struct.
0020-7683,
37
(
3
), pp.
515
533
.
12.
Huston
,
R. L.
, and
Kamman
,
J. W.
, 1982, “
Validation of a Finite Segment Cable Model
,”
Comput. Struct.
0045-7949,
15
(
6
), pp.
653
660
.
13.
Kamman
,
J. W.
, and
Huston
,
R. L.
, 1985, “
Modelling of Submerged Cable Dynamics
,”
Comput. Struct.
0045-7949,
20
(
1–3
), pp.
623
629
.
14.
Huang
,
S.
, 1994, “
Dynamics Analysis of Three-Dimensional Marine Cables
,”
Ocean Eng.
0029-8018,
21
(
6
), pp.
587
605
.
15.
Raman-Nair
,
W.
, and
Colbourne
,
B.
, 2003, “
Dynamics of a Mussel Longline System
,”
Aquacultural Eng.
0144-8609,
27
, pp.
191
212
.
16.
Kamman
,
J. W.
, and
Huston
,
R. L.
, 1999, “
Modeling of Variable Length Towed and Tethered Cable Systems
,”
J. Guid. Control Dyn.
0731-5090,
22
(
4
), pp.
602
608
.
17.
Nath
,
J. H.
, and
Felix
,
M. P.
, 1970, “
Dynamics of a Single Point Mooring in Deep Water
,”
J. Wtrwy., Harb. and Coast. Engrg. Div.
0044-8028,
96
, pp.
815
833
.
18.
Banerjee
,
A. K.
, and
Do
,
V. N.
, 1994, “
Deployment Control of a Cable Connecting a Ship to an Underwater Vehicle
,”
J. Guid. Control Dyn.
0731-5090,
17
(
6
), pp.
1327
1332
.
19.
Buckham
,
B.
, and
Nahon
,
M.
, 2001, “
Formulation and Validation of a Lumped Mass Model for Low-Tension ROV Tethers
,”
Int. J. Offshore Polar Eng.
1053-5381,
11
(
4
), pp.
282
289
.
20.
Buckham
,
B. J.
,
Driscoll
,
F. R.
, and
Nahon
,
M. A.
, 2004, “
Development of a Finite Element Cable Model for Use in Low-Tension Dynamics Simulations
,”
ASME J. Appl. Mech.
0021-8936,
71
(
4
), pp.
476
485
.
21.
Gerstmayr
,
J.
, and
Shabana
,
A. A.
, 2006, “
Anaylsis of Thin Beams and Cables Using the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
0924-090X,
45
, pp.
109
130
.
22.
Jiménez
,
P.
,
Thomas
,
F.
, and
Torras
,
C.
, 2001, “
3D Collision Detection: A Survey
,”
Comput. Graph.
0097-8930,
25
(
2
), pp.
269
285
.
23.
Teschner
,
M.
,
Kimmerle
,
S.
,
Heidelberger
,
B.
,
Zachmann
,
G.
,
Raghupathi
,
L.
,
Fuhrmann
,
A.
,
Cani
,
M. -P.
,
Faure
,
F.
,
Magnenat-Thalmann
,
N.
,
Strasser
,
W.
, and
Volino
,
P.
, 2005, “
Collision Detection for Deformable Objects
,”
Comput. Graph. Forum
1067-7055,
24
(
1
), pp.
61
81
.
24.
Lin
,
M. C.
, and
Canny
,
J. F.
, 1992, “
Efficient Collision Detection for Animation
,”
Third Eurographics Workshop on Animation and Simulation
, September.
25.
Lin
,
M.
, and
Manocha
,
D.
, 2003, “
Collision and Proximity Queries
,”
Handbook of Discrete and Computational Geometry
,
Chapman and Hall
,
London
.
26.
Ericson
,
C.
, 2005,
Real-Time Collision Detection
,
The Morgan Kaufmann Series in Interactive 3D Technology
,
Morgan Kaufmann
,
San Francisco, CA
.
27.
Redon
,
S.
,
Kim
,
Y. J.
,
Lin
,
M. C.
, and
Manocha
,
D.
, 2003, “
Fast Continuous Collision Detection for Articulated Models (tr03–038)
,” Technical Report, University of North Carolina at Chapel Hill.
28.
Lotan
,
I.
,
Schwarzer
,
F.
,
Latombe
,
J. C.
, and
Halperin
,
D.
, 2002, “
Efficient Maintenance and Self-Collision Testing for Kinematic Chains
,”
Symposium on Computational Geometry
, Barcelona, Spain, June, pp.
43
52
.
29.
Spillman
,
J.
, and
Teschner
,
M.
, 2007, “
CORDE: Cosserat Rod Elements for the Dynamic Simulation of One-Dimensional Elastic Objects
,”
2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation
, Aug. 2007, pp.
63
72
.
30.
Spillman
,
J.
, and
Teschner
,
M.
, 2007, “
Corde: Cosserate Rod Elements for the Dynamic Simulation of One-Dimensional Elastic Objects
,”
SIGGRAPH Symposium on Computer Animation
, pp.
1
10
.
31.
Brown
,
J.
,
Latombe
,
J. -C.
, and
Montgomery
,
K.
, 2004, “
Real-Time Knot-Tying Simulation
,”
Visual Comput.
0178-2789,
20
(
2–3
), pp.
165
179
.
32.
Nordgren
,
R. P.
, 1974, “
On Computation of the Motion of Elastic Rods
,”
ASME J. Appl. Mech.
0021-8936,
41
, pp.
777
780
.
33.
Carretero
,
J. A.
, and
Uppuluri
,
R.
, 2004, “
A Novel Optimization-Based Pruning Strategy for Concave Minimum Distance Problems
,”
Proceedings of the 2004 CSME Forum
, Ontario, Canada, June 1–4, pp.
581
591
.
34.
Uppuluri
,
R. L.
, 2005, “
Distance Determination Algorithms With Novel Pruning Strategies for Complex Dynamics Simulations
,” MS thesis, Department of Mechanical Engineering, University of New Brunswick, Fredericton, New Brunswick, Canada.
35.
Carretero
,
J. A.
, and
Nahon
,
M. A.
, 2005, “
Solving Minimum Distance Problems With Convex or Concave Bodies Using Combinatorial Global Optimization
,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
1083-4419,
35
(
6
), pp.
1144
1155
.
36.
Ma
,
O.
, and
Nahon
,
M.
, 1992, “
A General Method for Computing the Distance Between Two Moving Objects Using Optimization Techniques
,”
ASME Advances in Design Automation
, Vol.
1
,
ASME
,
New York
, pp.
109
117
.
37.
Roy
,
A. R.
, 2008, ”
Simulation of Contact Forces Between Cylindrical, Slack and Flexible Tethers for Situations of Self-Collision
,” MS thesis, Department of Mechanical Engineering, University of New Brunswick, Fredericton, New Brunswick, Canada.
38.
Belegundu
,
A. D.
, and
Chandrupatla
,
T. R.
, 2002,
Optimization Concepts and Applications in Engineering
,
Pearson Education
.
39.
Gonthier
,
Y.
,
Mcphee
,
J.
,
Lange
,
C.
, and
Piedbœuf
,
J. -C.
, 2005, “
A Contact Modeling Method Based on Volumetric Properties
,”
Proceedings of IDETC’05 2005 ASME Design Engineering Technical Conferences and Fifth International Conference on Multibody Systems, Nonlinear Dynamics and Control
, September, pp.
24
28
.
You do not currently have access to this content.