A two-dimensional fully nonlinear potential flow model is employed to investigate nonlinear stochastic responses of an experimental fluid-structure interaction system that includes both single-degree-of-freedom surge-only and two-degree-of-freedom surge-heave coupled motions. Sources of nonlinearity include free surface boundary, fluid-structure interaction, and large geometry in the structural restoring force. Random waves performed in the tests include nearly periodic, periodic with band-limited noise, and narrow band. The structural responses observed can be categorized as nearly deterministic (harmonic, sub- and super-harmonic), noisy periodic, and random. Transition phenomena between coexisting response attractors are also identified. An implicit boundary condition upholding the instantaneous equilibrium between the fluid and structure using a mixed Eulerian-Lagrangian method is employed. Numerical model predictions are calibrated and validated via the experimental results under the three types of wave conditions. Extensive simulations are conducted to identify the response characteristics and the effects of random perturbations on nonlinear responses near primary and secondary resonances.

1.
Virgin
,
L. N.
, and
Bishop
,
S. R.
, 1988, “
Complex Dynamics and Chaotic Responses in the Time Domain Simulations of a Floating Structure
,”
Ocean Eng.
0029-8018,
15
, pp.
7
90
.
2.
Garza-Rios
,
L. O.
, and
Bernitsas
,
M. M.
, 1995, “
Analytical Expressions of the Bifurcation Boundaries for Symmetric Spread Mooring Systems
,”
Appl. Ocean. Res.
0141-1187,
17
, pp.
325
341
.
3.
Garza-Rios
,
L. O.
, and
Bernitsas
,
M. M.
, 1999, “
Slow Motion Dynamics of Turrent Mooring Systems and its Approximation as Single Point Mooring
,”
Appl. Ocean. Res.
0141-1187,
21
, pp.
27
39
.
4.
Matsuura
,
J. P. J.
,
Nishimoto
,
K.
,
Bernitsas
,
M. M.
, and
Garza-Rios
,
L. O.
, 2000, “
Comparative Assessment of Hydrodynamics Models in Slow Motion Mooring Dynamics
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
122
, pp.
109
117
.
5.
Kim
,
B. K.
, and
Bernitsas
,
M. M.
, 2001, “
Nonlinear Dynamics and Stability of Spread Mooring With Riser
,”
Appl. Ocean. Res.
0141-1187,
23
, pp.
111
123
.
6.
Choi
,
H. S.
, and
Lou
,
J. Y. K.
, 1991, “
Nonlinear Behavior of an Articulated Loading Platform
,”
Appl. Ocean. Res.
0141-1187,
13
, pp.
63
74
.
7.
Thompson
,
J. M. T.
, 1983, “
Complex Dynamics of Compliant Offshore Structures
,”
Proc. R. Soc. London, Ser. A
1364-5021,
387
, pp.
407
427
.
8.
Lin
,
H.
, and
Yim
,
S. C. S.
, 1995, “
Chaotic Roll Motion and Capsizing of Ships Under Periodic Excitation With Random Noise
,”
Appl. Ocean. Res.
0141-1187,
17
, pp.
185
204
.
9.
Hsieh
,
S. R.
,
Troesch
,
A. W.
, and
Shaw
,
S. W.
, 1994, “
Nonlinear Probabilistic Method for Predicting Vessel Capsizing in Random Beam Seas
,”
Proc. R. Soc. London, Ser. A
1364-5021,
445
, pp.
195
211
.
10.
Yim
,
S. C. S.
,
Myrum
,
M. A.
,
Gottlieb
,
O.
,
Lin
,
H.
, and
Shih
,
I.-M.
, 1993, Summary and Preliminary Analysis of Nonlinear Oscillations in a Submerged Mooring System Experiment, Ocean Engineering Report No. OE-93-03, Oregon State University.
11.
Lin
,
H.
, and
Yim
,
S. C. S.
, 1998, “
Experimental Calibration of Bifurcation Superstructure of Nonlinear System
,”
J. Eng. Mech.
0733-9399,
124
, pp.
471
475
.
12.
Lin
,
H.
, and
Yim
,
S. C. S.
, 1997, “
Noisy Nonlinear Motions of a Moored System, Part I: Analysis and Simulations
,”
J. Waterway, Port, Coastal, Ocean Eng.
0733-950X, ASCE,
123
, pp.
287
295
.
13.
Lin
,
H.
, and
Yim
,
S. C. S.
, 2004, “
Stochastic Analysis of a SDOF Nonlinear Moored Experimental System Using an IFF Model
,”
J. Eng. Mech.
0733-9399,
130
, pp.
161
169
.
14.
Shinozuka
,
M.
, 1977, “
Simulation of Multivariate and Multidimensional Random Processes
,”
J. Acoust. Soc. Am.
0001-4966,
49
, pp.
357
367
.
15.
Tanizawa
,
K.
, 2000, “
The State of the Art on Numerical Wave Tank
,”
Proc. 4th Osaka Colloquium on Seakeeping Performance of Ships
, Osaka, Japan, October 17–21, pp.
95
114
.
16.
Longuet-Higgins
,
M.
, and
Cokelet
,
E.
, 1976, “
The Deformation of Steep Surface Waves on Water I. A Numerical Method of Computation
,”
Proc. R. Soc. London, Ser. A
1364-5021,
350
, pp.
1
26
.
17.
Dean
,
R. G.
, and
Dalrymple
,
R. A.
, 1984,
Water Mechanics for Engineers and Scientists
,
Prentice-Hall
, Englewood Cliffs, NJ.
18.
Dommermuth
,
D.
, and
Yue
,
D.
, 1987, “
Numerical Simulations of Nonlinear Axisymmetric Flows With a Free Surface
,”
J. Fluid Mech.
0022-1120,
178
, pp.
195
219
.
You do not currently have access to this content.