This paper describes the mode mixity of stress-intensity factors for surface cracks at weld toes located at the saddle point in circular hollow section X joints. The remote loading applies a uniform tensile stress at the end of the brace along its axis. The three-dimensional finite element models employ mesh tieing between a topologically continuous, global mesh and a separate, local crack-front mesh. Analyses of a simple plate model that approximates key features of toe cracks at the brace-chord intersection verify the negligible effects of the recommended mesh-tieing scheme on stress intensity factors. The linear-elastic analyses compute the mixed-mode stress intensity factors along the crack front using an interaction-integral approach. The mixed-mode stress intensity factors indicate that the crack front experiences predominantly mode I loading, with KIII0 near the deepest point on the front (ϕ=π2). The total crack driving force, described by the J integral, reaches a maximum value at the deepest point of the crack for the crack aspect ratio ac=0.25 considered here. The mode-mixity angle, ψ=tan1(KIIKI), at ϕ=π2 is compared for a range of practical X-joint configurations and crack-depth ratios. The present study demonstrates that the mode-mixity angle ψ increases with increasing brace-to-chord diameter ratio (β) and decreasing chord radius to wall thickness ratio (γ). Values of the nondimensional stress intensity factors (FI=KIσ¯brπa and FII=KIIσ¯brπa), however, show an opposite trend, with higher crack driving forces for small β and large γ ratios. The variations in the brace-to-chord wall thickness ratio (τ) and the crack depth ratio (at0) do not generate significant effects on the mode mixity.

1.
Laukkanen
,
A.
, 2001, “
Analysis of Experimental Factors in Elastic-Plastic Small Specimen Mixed-Mode I-II Fracture Mechanical Testing
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
24
, pp.
193
206
.
2.
Narasimhan
,
R.
,
Roy
,
Y. A.
, and
Arora
,
P. R.
, 1999, “
An Experimental Investigation of Constraint Effects on Mixed Mode Fracture Initiation in a Ductile Aluminium Alloy
,”
Acta Mater.
1359-6454,
47
, pp.
1587
1596
.
3.
Ghosal
,
A. K.
, and
Narasimhan
,
R.
, 1996, “
Numerical Simulations of Hole Growth and Ductile Fracture Initiation Under Mixed-Mode Loading
,”
Int. J. Fract.
0376-9429,
A211
, pp.
117
127
.
4.
Dhirendra
,
V. K.
, and
Narasimhan
,
R.
, 1998, “
Mixed-Mode Steady-State Crack Growth in Elastic-Plastic Solids
,”
Eng. Fract. Mech.
0013-7944,
59
, pp.
543
559
.
5.
Schumacher
,
A.
,
Nussbaumer
,
A.
, and
Hirt
,
M.
, 2001, “
Fatigue Behavior of Welded Circular Hollow Section (CHS) Joints in Bridges
,”
Tubular Struct.
,
IX
, pp.
291
297
.
6.
Dayawansa
,
P.
,
Chitty
,
G.
,
Kerezsi
,
B.
,
Price
,
J. W. H.
,
Bartosiewicz
,
H.
, and
Zhao
,
X. L.
, 2005, “
The Structural Challenge of Mining Dragline Booms
,”
4th Australian Congress App. Mech
, National Committee on Applied Mechanics, Melbourne, Australia.
7.
Chang
,
E.
, and
Dover
,
W. D.
, 1999, “
Parametric Equations to Predict Stress Distributions Along the Intersection of Tubular X and DT Joints
,”
Int. J. Fatigue
0142-1123,
21
, pp.
619
635
.
8.
Haswell
,
J.
, 1991, “
Simple-Models for Predicting Stress Intensity Factors for Tubular Joints
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
14
, pp.
499
513
.
9.
Skallerud
,
B.
, 1996, “
A Mixed Mode I/II Inelastic Line Spring
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
4143
4166
.
10.
Skallerud
,
B.
, 1995, “
Inelastic Line Springs in Nonlinear Analysis of Cracked Tubular Joints
,”
Int. J. Solids Struct.
0020-7683,
18
, pp.
463
477
.
11.
Rhee
,
C. H.
, and
Salama
,
M. M.
, 1987, “
Mixed-Mode Stress Intensity Factor Solutions of a Warped Surface Flaw by Three-Dimensional Finite Element Analysis
,”
Eng. Fract. Mech.
0013-7944,
28
, pp.
203
209
.
12.
Rhee
,
C. H.
, 1989, “
Stress Intensity Factors Evolution from Displacements along Arbitrary Crack Tip Radial Lines for Warped Surface Flaws
,”
Eng. Fract. Mech.
0013-7944,
32
, pp.
723
730
.
13.
Rhee
,
C. H.
, 1989, “
Fatigue Crack Growth Analyses of Offshore Structural Tubular Joints
,”
Eng. Fract. Mech.
0013-7944,
34
, pp.
1231
1239
.
14.
Bowness
,
D.
, and
Lee
,
M. M. K.
, 1995, “
The Development of an Accurate Model for the Fatigue Assessment of Doubly Curved Cracks in Tubular Joints
,”
Int. J. Fract.
0376-9429,
73
, pp.
129
147
.
15.
Lie
,
S. T.
,
Chiew
,
S. P.
,
Lee
,
C. K.
, and
Huang
,
Z. W.
, 2003, “
Fatigue Performance of Cracked Tubular T Joints under Combined Loads. II: Numerical
,”
J. Struct. Eng.
0733-9445,
130
, pp.
572
581
.
16.
Bowness
,
D.
, and
Lee
,
M. M. K.
, 2000, “
Weld Toe Magnification Factors for Semi-Elliptical Cracks in T-Butt Joints—Comparison with Existing Solutions
,”
Int. J. Fatigue
0142-1123,
22
, pp.
289
396
.
17.
Lee
,
M. M. K.
, and
Bowness
,
D.
, 2002, “
Estimation of Stress Intensity Factor Solutions for Weld Toe Cracks in Offshore Tubular Joints
,”
Int. J. Fract.
0376-9429,
24
, pp.
861
875
.
18.
Newman
,
J. C.
, and
Raju
,
I. S.
, 1981, “
An Empirical Stress Intensity Factor Equation for the Surface Crack
,”
Eng. Fract. Mech.
0013-7944,
15
, pp.
185
192
.
19.
Burdekin
,
F. M.
,
Yang
,
G. J.
,
Cao
,
J.
, and
Stacey
,
A.
, 1998, “
Assessment of Effects of Mixed Mode Loading in Fracture Strength of Cracked Tubular Joints
,”
Proc. 17th Int. Conference on Offshore Mech. and Arctic Engineers
, Lisbon, Portugal, OMAE98-2101.
20.
Gullerud
,
A. S.
,
Koppenhoefer
,
K. C.
,
Roy
,
A.
, and
Dodds
,
R. H.
Jr.
, 2004, WARP3D: Release 15.0 Manual, Civil Engineering, Report No. UILU-ENG-95-2012,
University of Illinois
, Urbana.
21.
American Welding Society
(AWS), 2000, Structural Welding Code-Steel, AWS D1.1:2000, ASW, United States.
22.
Dijkstra
,
O. D.
, 1985, “
The Effect of Grinding and a Special Weld Profile on the Fatigue Behavior of Large-Scale Tubular Joints
,”
Offshore Technology Conference
. OTC 4866, OTC, Houston, United States, pp.
229
236
.
23.
Qian
,
X. D.
,
Romeijin
,
A.
,
Wardenier
,
J.
, and
Choo
,
Y. S.
, 2002, “
An Automatic FE Mesh Generator for CHS Tubular Joints
,”
Proc. 12th Int. Offshore and Polar Engineering Conference
,
Yukio
Ueda
, eds., ISOPE, Kitakyushu, Japan,
4
, pp.
1
18
.
24.
Structural Reliability Technology
(SRT), 2004,
FEA CRACK Version 2.6 Users’ Manual
, Structural Reliability Technology, United States.
25.
Bowness
,
D.
, and
Lee
,
M. M. K.
, 1998, “
Fatigue Crack Curvature Under the Weld Toe in an Offshore Tubular Joint
,”
Int. J. Fatigue
0142-1123,
20
, pp.
481
490
.
26.
Cao
,
J. J.
,
Yang
,
G. J.
,
Packer
,
J. A.
, and
Burdekin
,
F. M.
, 1998, “
Crack Modeling in FE Analysis of Circular Tubular Joints
,”
Eng. Fract. Mech.
0013-7944,
61
, pp.
537
553
.
27.
Williams
,
M. L.
, 1957, “
On the Stress Distribution at the Base of a Stationary Crack
,”
ASME J. Appl. Mech.
0021-8936,
24
, pp.
109
114
.
28.
Nahta
,
R.
, and
Moran
,
B.
, 1993, “
Domain Integral for Axisymmetric Interface Problems
,”
Int. J. Solids Struct.
0020-7683,
30
, pp.
2027
2040
.
29.
Gosh
,
M.
,
Dolbow
,
J.
, and
Moran
,
B.
, 1998, “
Domain Integral Formulation for Stress Intensity Factor Computation Along Curved Three-Dimensional Interface Cracks
,”
Int. J. Solids Struct.
0020-7683,
35
, pp.
1763
1783
.
30.
Gosh
,
M.
, and
Moran
,
B.
, 2002, “
An Interaction Energy Integral Method for Computation of Mixed-Mode Cracks Via Two-State Integrals
,”
Eng. Fract. Mech.
0013-7944,
69
, pp.
299
319
.
31.
Walters
,
M. C.
,
Paulino
,
G. H.
, and
Dodds
,
R. H.
Jr.
, 2004, “
Interaction-Integral Procedures for 3D Curved Cracks Including Surface Tractions
,” (unpublished).
32.
Shih
,
C. F.
,
Moran
,
B.
, and
Nakamura
,
T.
, 1986, “
Energy Release Rate Along a Three-Dimensional Crack Front in a Thermally Stressed Body
Int. J. Fract.
0376-9429,
30
, pp.
79
102
.
You do not currently have access to this content.