A few future directions and challenges in wave research are briefly discussed including Numerical Experiments as in the treatment of splashing waves, and topics in the Mechanics of Ocean Waves, especially in their nonlinear, nonconservative reality. Breaking waves are featured.

1.
Wehausen, J. V., and Laitone, E. V., 1960, Surface waves. Handbuch der Physik, 9, Berlin, Springer.
2.
Dagan, G., 1972, “
Nonlinear ship wave theory”, 9th Symposium on Naval Hydrodynamics, Paris. pp. 1697–1737. National Academy Press.
3.
Tulin, M. P., and Wu, J., 1996, “Divergent bow waves.” Proc. 21st ONR Symp. NAV Hydro. Trondherm. Nat’l Academ Press, Washington, D. C., pp. 99–117.
4.
Maruo, H., and Song, W., 1994, “Nonlinear analysis of bow wave breaking and deck wetness of a high speed ship by the parabolic approximation,” Proc.20th ONR Symp. On Naval Hydrodynamics. Santa Barbara, National Academy Press, Washington, D. C.
5.
Phillips
,
O. M.
,
1958
, “
The equilibrium ranges in the spectrum of wind-generated waves
,”
J. Fluid Mech.
,
4
, pp.
426
426
.
1.
Phillips
,
O. M.
,
1960
, “
On the dynamics of unsteady gravity-waves of finite amplitude, Part 1
,”
J. Fluid Mech.
,
9
, pp.
193
217
;
2.
Part 2. 1961, 11, pp. 143–155.
1.
Hasselman
,
K.
,
1962
, “
On the nonlinear energy transfer in a gravity-wave spectrum, Part 1, General theory
,”
J. Fluid Mech.
,
12
, pp.
481
500
.
2.
Hasselman
,
K.
,
1963
, “
On the nonlinear energy transfer in a gravity-wave spectrum, Part 2, Conservation theorems, wave-particle analogy, irreversibility
,”
J. Fluid Mech.
,
15
, pp.
273
281
.
3.
Whitham
,
G. B.
,
1965
,
J. Fluid Mech.
,
22
, pp.
273
273
.
4.
Benjamin
,
T. B.
, and
Feir
,
J. E.
,
1967
, “
The Disintegration of Wave Trains in Deep Water. Part 1. Theory
,”
J. Fluid Mech.
,
27
, pp.
417
430
.
5.
Benney
,
D. J.
, and
Newell
,
A. C.
,
1967
, “
The Propagation of Nonlinear Wave Envelopes
,”
J. Math. Phys.
,
46
, pp.
133
139
.
6.
Zakharov
,
V. E.
, 1967, “The Instability of Waves in Nonlinear Dispersive Media,” Sov. Phys., J. Exp. Theo. Phys, 23, pp. 740–44.
7.
Zakharov
,
V. E.
, 1968, “Stability of Periodic Waves of Finite Amplitude on the Surface of Deep Fluid,” Sov. Phys., J. Appl. Mech. Tech. Phys., 4, pp. 86–90.
8.
Chu
,
V. H.
, and
Mei
,
C. C.
,
1970
, “
On Slowly Varying Stokes Waves.
J. Fluid Mech.
,
41
(
4
), pp.
873
887
.
9.
Longuet-Higgins
,
M. S.
,
1978
, “
The Instabilities of Gravity Waves of Finite Amplitude in Deep Water I Superharmonics.
Proc. R. Soc. London, Ser. A
,
360
, pp.
471
488
.
10.
Krasitskii
,
V. P.
,
1994
, “
On Reduced Equations in the Hamiltonian Theory of Weakly Nonlinear Surface Waves
,”
J. Fluid Mech.
,
272
, pp.
1
20
.
11.
Li, J. J., and Tulin, M. P., 1995, “Nonlinear Mechanics of Gravity Waves on Deep Water; on the Nonlinear Schro¨dinger Equation,” Potential Flow of Fluids, Chapter 3, Intl. Series on Adv. In Fluid Mech., Computational Mechanics Publication, Boston. ISBN 1.56252.279.5.
12.
Longuet-Higgins
,
M. S.
, and
Cokelet
,
E. D.
,
1976
, “
The Deformation of Steep Surface Waves on Water, I, A Numerical Method of Computation.
Proc. R. Soc. London, Ser. A
,
350
, pp.
1
26
.
13.
Dommermuth
,
D.
, and
Yue
,
D.
,
1987
, “
A High-Order Spectral Method for the Study of Nonlinear Gravity Waves
,”
J. Fluid Mech.
,
184
, pp.
267
288
.
14.
Dold, J. W., and Peregrine, D. J., 1986, “Water-Wave Modulation,” Proc. 20th Int. Conf. On Coastal Eng., Taipei, 1, pp. 163–175.
15.
Wang
,
P.
,
Yao
,
Y.
, and
Tulin
,
M. P.
,
1994
, “
Wave-Group Evolution, wave Deformation and Breaking: Simulation Using LONGTANK, a Numerical Wave Tank
,”
Int. J. Offshore Polar Eng.
4
, pp.
200
205
.
16.
Donelan
,
M.
,
Longuet-Higgins
,
M. S.
, and
Turner
,
J. S.
,
1972
, “
Periodicity in Whitecaps
,”
Nature (London)
,
20
, pp.
449
451
.
17.
Lake
,
B. M.
, and
Yuen
,
H. C.
,
1978
, “
A New Model for Nonlinear Wind Waves, Part 1, Physical Model & Experimental Evidence
,”
J. Fluid Mech.
,
88, Part 1
, pp.
33
62
.
18.
Su
,
J.-Y.
,
Bergin
,
M.
,
Marler
,
P.
, and
Myrick
,
R.
,
1982
, “
Experiments on Nonlinear Instabilities and Evolution of Steep Gravity-Wave Trains
,”
J. Fluid Mech.
,
124
, pp.
45
72
.
19.
Su, M.-Y., and Green, A. W., 1985, “Wave Breaking and Nonlinear Instability Coupling,” The Ocean Surface (ed. Y. Toba and H. Mitsuyasu), pp. 31–38. D. Reidel.
20.
Su, M.-Y., 1986, “Large, Steep Waves, Wave Grouping and Breaking.” Proc. 16th Symposium on Naval Hydrodynamics, pp. 78–92. National Academy Press. Washington, D. C.
21.
Toba
,
Y.
,
1972
, “
Local Balance in the Air-Sea Boundary Processes I. On the Growth Process of Wind Waves
,”
J. Oceanogr. Soc. Jpn.
,
28
, pp.
109
120
.
22.
Toba
,
Y.
,
1973
, “
Local Balance in the Air-Sea Boundary Processes, Part III, On the Spectrum of Wind Waves
,”
J. Oceanogr. Soc. Jpn.
,
29
, pp.
209
220
.
23.
Melville
,
W. K.
,
1982
, “
The Instability and Breaking of Deep-Water Waves
,”
J. Fluid Mech.
,
115
, pp.
165
185
.
24.
Bonmarin
,
P.
, and
Ramamonjiarisoa
,
A.
,
1985
, “
Deformation to Breaking of Deep Water Gravity Waves
,”
Exp. Fluids
,
3
, pp.
11
16
.
25.
Bonmarin
,
P.
,
1989
, “
Geometric Properties of Deep-Water Breaking Waves
,”
J. Fluid Mech.
,
209
, pp.
405
433
.
26.
Tulin
,
M. P.
, and
Waseda
,
T.
,
1999
, “
Laboratory Observations of Wave Group Evolution, Including Breaking Effects
,”
J. Fluid Mech.
,
378
, pp.
197
232
.
27.
Tulin, M. P., and Landrini, M., 2000, “Breaking Waves in the Ocean and Around Ships,” Proceedings 23rd ONR Symposium on Naval Hydrodynamics, Rouen, France, National Academy Press, Washington, D.C.
28.
Wang
,
P.
,
Yao
,
Y.
, and
Tulin
,
M. P.
,
1995
, “
An Efficient Numerical Tank for Nonlinear Water Waves, Based on the Multi-Subdomain Approach with BEM
,”
Int. J. Numer. Methods Fluids
,
20
, pp.
1315
1336
.
29.
Yao, Y. T., Wang, P., and Tulin, M. P., 1994 Wave-Groups, Wave-Wave Interactions and Wave Breaking, Proc. 20th ONR Symp. On Naval Hydrodynamics, Santa Barbara, Natl. Academy Press, Washington, D. C., pp. 551–567.
30.
Longuet-Higgins
,
M. S.
,
1960
, “
On Wave Breaking and the Equilibrium Spectrum of Wind-Generated Waves
,”
Proc. R. Soc. London, Ser. A
,
310
, pp.
151
159
.
31.
Lucy
,
L. B.
,
1977
, “
A Numerical Approach to the Testing of the Fission Hypothesis
,”
Astron. J.
,
83
, No. 12 pp.
1013
1024
.
32.
Monaghan
,
J. J.
,
1992
, “
Smoothed Particle Hydrodynamics
,”
Annu. Rev. Astron. Astrophys.
,
30
, pp.
543
574
.
33.
Colagrossi, A., Landrini, M., and Tulin, M. P., 2000, “Near Shore Bore Propagation and Splashing Processes: Gridless Simulations,” Proceedings 6th International Workshop on Wave Hindcasting and Forecasting, Monterey, CA.
34.
Sverdrup, H. V., and Munk, W. H., 1947, Wind, Sea, and Swell: Theory of Relations for Forecasting, US. Navy Hydrographic Office Pub. 601, 44.
1.
Neumann
,
G.
, and
Pierson
, Jr.,
W. J.
,
1957
, “
A Detailed Comparison of Theoretical Wave Spectra & Wave Forecasting Methods
,”
Deutsch. Hydrogr. Zeitschift
,
10, Part 3
, pp.
73
92
;
2.
Part 4 pp. 134–146.
1.
Kinsman, B., 1965, Water Waves, Prentice-Hall, New York.
2.
Taylor
,
G. I.
,
1935
, “
Statistical Theory of Turbulence
,”
Proc. R. Soc. London, Ser. A
,
151
, pp.
421
478
.
3.
Swamp Group, 1985, “Sea Wave Modeling Project (SWAMP),” Ocean Wave Modeling, Plenum, New York, 256 pp.
4.
Komen, G. J., Cavaleri, L., Donelan M., Hasselmann, K., Hasselmann S., and Janssen, P. A. E. M., 1994, Dynamics and Modelling of Ocean Waves, Cambridge University Press.
5.
Wilson
,
B.
,
1965
, “
Numerical Prediction of Ocean Waves in the North Atlantic for December
,”
Z Deutsch. Hydrogr
,
18
, pp.
114
130
.
6.
Mitsuyasu
,
H.
,
Nakamura
,
R.
, and
Komoni
,
T.
,
1971
, “
Observation of the Wind and Waves in Hakata Bay
,”
Rep. Res. Inst. Appl. Mech. (Kyushu Univ.)
,
19
, pp.
37
74
, Kyushu Univ.
7.
Hasselman
,
K.
,
1973
, “
Measurements of Wind-Wave Growth and Swell Decay Driving the Joint North Sea Wave Project (JONSWAP)
,”
Deutsch. Hydrogr. Z.
,
230
, pp.
1
95
.
8.
Yuen
,
H. C.
, and
Lake
,
B. B.
,
1982
, “
Nonlinear Dynamics of Deep-Water Gravity Waves
,”
Adv. Appl. Mech.
,
22
, pp.
68
229
.
9.
Karpman
,
V. I.
, and
Kruskal
,
E. M.
,
1969
,
Sov. Phys. JETP
,
28
, pp.
277
281
.
10.
Hara
,
T.
, and
Mei
,
C. C.
,
1991
, “
Frequency Downshift in Narrowbanded Surface Waves Under the Influence of Wind
,”
J. Fluid Mech.
,
230
, pp.
429
477
.
11.
Trulsen, K., and Dysthe, K., 1990, Frequency Down-Shift Through Self Modulation and Breaking, Water Wave Kinematics A. Torum & T. Gudmestad, ed., pp. 561–572.
12.
Roskes
,
G. J.
,
1977
, “
Fourth Order Envelope Equation for Nonlinear Dispersive Gravity Waves
,”
Phys. Fluids
,
20
, pp.
1576
77
.
13.
Dysthe
,
K. B.
,
1979
, “
Note on a Modification to the Nonlinear Schro¨dinger Equation for Application to Deep Water Waves
,”
Proc. R. Soc. London, Ser. A
,
369
, pp.
105
114
.
14.
Lo
,
E.
, and
Mei
,
C. C.
,
1985
, “
A Numerical Study of Water-Wave Modulation Based on a Higher-Order Nonlinear Schro¨dinger Equation
,”
J. Fluid Mech.
,
150
, pp.
395
416
.
15.
Stiassnie
,
J.
,
1984
, “
Note on the Modified Nonlinear Schro¨dinger Equation for Deep Water Waves
,”
Wave Motion
,
6
, pp.
431
33
.
16.
Li
,
J. J.
, and
Tulin
,
M. P.
,
1994
, “
Sideband Evolution of a Complex Ginsburg-Landau Equation: a Three Dimensional Dynamical System and its Resulting New Periodic Attractor
,”
Physica D
,
72
, pp.
46
60
.
17.
Tulin, J. P., and Li, J. J., 2002, Dual Evolution Equations for a Wind Driven, Breaking Ocean Wave as Derived from Variational Considerations, Proceedings 17th International Workshop on Water Waves and Floating Bodies, Cambridge.
18.
Oshri, O., 1996, Frequency Downshifting in Water Waves. PhD Dissertation. University of California at Santa Barbara.
19.
Benjamin
,
T. B.
, and
Olver
,
P. J.
,
1983
, “
Hamiltonian Structure, Symmetries and Conservation Laws for Water Waves
,”
J. Fluid Mech.
,
97
, pp.
1
25
.
20.
Longuet-Higgins
,
M. S.
,
1983
, “
On Integrals & Invariants for Invisicid, Irrotational Flow Under Gravity
,”
J. Fluid Mech.
,
134
, pp.
155
159
.
21.
Longuet-Higgins
,
J. S.
,
1980
, “
Spin and Angular Momentum in Gravity Waves
,”
J. Fluid Mech.
,
97
, pp.
1
25
.
22.
Tulin, M. P., 1996, Breaking of Ocean Waves and Downshifting, Waves and Nonlinear Processes in Hydrodynamics (ed. J. Grue, B. Gjevid and J. E. Weber), pp. 117–196. Kluwer.
23.
Zakharov
,
V. E.
, and
Filonenko
,
N. N.
,
1966
, “
The Energy Spectrum for Stochastic Surface Level Oscillations
,”
Dokl. A. N. SSSR
,
170
, pp.
1292
1295
.
24.
Landrini, J., Oshri, O., Waseda, T., and Tulin, M. P., 1998, Long Time Evolution of Gravity Wave Systems, Proc. 13th Intl Workshop on Water Waves and Floating Bodies. (A. J. Hermans, ed., Delft Univ.), pp. 75–78.
25.
Trulsen
,
K.
, and
Dysthe
,
K. B.
,
1997
, “
Frequency Downshift in Three-Dimensional Wave Trains in a Deep Basin
,”
J. Fluid Mech.
,
352
, pp.
359
373
.
26.
Li
,
J.
, and
Tulin
,
M. P.
,
1998
, “
On the Stability & Nonlinear Dynamics of Ocean-Like Wave Systems with Energy Continuously Distributed in Direction
,”
J. Eng. Math.
,
34
, pp.
59
70
, Kluwer.
27.
Hatori
,
J.
, and
Toba
,
Y.
,
1983
, “
Transition of Mechanically Generated Regular Waves to Wind Waves Under the Action of Wind
,”
J. Fluid Mech.
,
130
, pp.
397
409
.
28.
Waseda, T., and Tulin, M. P., 1994, Wind Wave Research at OEL, Discrete Spectra, Proc 2nd Int. Conf. On Air-Sea Interaction and on Meteorology and Oceanography of the Coastal Zone. American Meteorological Soc., pp. 82–3.
29.
Fuchs, J., and Tulin, M. P., 2000, Experimental Scatterer Characterization: The Importance and Nature of Compact Scatters in LGA Imaging of the Ocean, Emphasizing Microbreakers, NATO RTO-MP-60 Low Grazing Angle Clutter. Also OEL Tech. Rpt. No. 00-218.
30.
Lamont-Smith
,
T.
,
Fuchs
,
J.
, and
Tulin
,
M. P.
,
2002
, “
Radar Investigation of the Structure of Wind Waves
,”
J. Oceanogr. Soc. Jpn.
,
40
, pp.
12
18
.
You do not currently have access to this content.