Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

During the service of ferromagnetic structural steel materials, stress should be evaluated accurately. Although the magnetic Barkhausen noise (MBN) testing has the ability to sense stress, it can be easily interfered with by environment. In this paper, a new MBN sensor is fabricated by selecting FeCoNi(AlMn)0.25 high entropy alloy (HEA) as the case of magnetic core to improve the accuracy of stress evaluation. The process optimization results show that the stability of MBN signal characteristics is the largest when the excitation frequency is 4 Hz and the voltage is 6 V. The signal-to-noise ratio of MBN indicates that the HEA and Ni-Zn ferrite probes have better anti-interference capability. The MBN signal characteristic values peak voltage and root mean square measured by the HEA probe can linearly quantify the stress level with higher efficiency, stability, and accuracy. The underlying reason of high sensitivity of HEA probe to the variation of MBN signals is revealed based on the magnetic properties. The microstructure and the thermodynamic parameters are analyzed to clarify whether the additions of Al and Mn atoms can affect the short-ranged magnetic exchange interaction and lattice distortion, which affects the magnetization behavior of HEA. Finally, the availability of MBN sensor with HEA magnetic core to the stress evaluation on the retired slide rails of car seats is conducted, which demonstrates its great application value.

References

1.
Xu
,
B. S.
,
Xia
,
D.
,
Tan
,
J. Y.
, and
Dong
,
S. Y.
,
2018
, “
Status and Development of Intelligent Remanufacturing in China
,”
China Surf. Eng.
,
31
(
5
), pp.
1
13
.
2.
Vourna
,
P.
,
Ktena
,
A.
,
Tsarabaris
,
P.
, and
Hristoforou
,
E.
,
2018
, “
Magnetic Residual Stress Monitoring Technique for Ferromagnetic Steels
,”
Metals
,
8
(
8
), p.
592
.
3.
Tsuchida
,
Y.
, and
Enokizono
,
M.
,
2018
, “
Residual Stress Evaluation by Barkhausen Signals With a Magnetic Field Sensor for High Efficiency Electrical Motors
,”
AIP Adv.
,
8
(
4
), p.
047608
.
4.
Sapountzi
,
K.
, and
Enokizono
,
M.
,
2011
, “
Residual Stress Prediction in Welds Via the Barkhausen Noise Technique
,”
Key Eng. Mater.
,
495
, pp.
209
212
.
5.
Li
,
P.
,
Wang
,
X.
,
Ding
,
D.
,
Gao
,
Z.
,
Fang
,
W.
,
Zhang
,
C.
,
He
,
C.
, and
Liu
,
X.
,
2023
, “
Surface Decarburization Depth Detection in Rods of 60Si2Mn Steel With Magnetic Barkhausen Noise Technique
,”
Sensors
,
23
(
1
), p.
503
.
6.
Qian
,
Z. C.
,
Zeng
,
H. W.
,
Liu
,
H. Y.
,
Ge
,
Y. F.
,
Cheng
,
H. B.
, and
Huang
,
H. H.
,
2022
, “
Effect of Hard Particles on Magnetic Barkhausen Noise in Metal Matrix Composite Coatings: Modeling and Application in Hardness Evaluation
,”
IEEE Trans. Magn.
,
58
(
5
), p.
2101412
.
7.
Staub
,
A.
,
Scherer
,
M.
,
Zehnder
,
P.
,
Spierings
,
A. B.
, and
Wegener
,
K.
,
2022
, “
Residual Stresses Measurements in Laser Powder Bed Fusion Using Barkhausen Noise Analysis
,”
Materials
,
15
(
7
), p.
2676
.
8.
Amanda
,
R. D. O.
,
Matic
,
J. K.
,
Vitor
,
F. D. O.
,
Teixeira
,
J. C.
, and
Conte
,
E. G. D.
,
2021
, “
Barkhausen Noise Monitoring of Microstructure and Surface Residual Stress in Maraging Steel Manufactured by Powder Bed Fusion and Aging
,”
Int. J. Adv. Manuf. Technol.
,
119
(
3–4
), pp.
1835
1852
.
9.
Shenoy
,
B. B.
,
Li
,
Z.
,
Udpa
,
L.
,
Udpa
,
S.
,
Deng
,
Y.
, and
Seuaciuc-Osorio
,
T.
,
2022
, “
Magnetic Barkhausen Noise Technique for Fatigue Detection and Classification in Martensitic Stainless-Steel
,”
Diag. Progn. Eng. Syst.
,
5
(
4
), p.
041010
.
10.
Tu
,
H. M.
,
Wu
,
J. B.
,
Roskosz
,
M.
,
Liu
,
C. Y.
, and
Qiu
,
S. C.
,
2021
, “
Influence of Defects on Stress Detection by Magnetic Barkhausen Noise
,”
J. Nondestr. Eval.
,
40
(
4
), p.
93
.
11.
Wang
,
P.
,
Zhu
,
L.
,
Zhu
,
Q. J.
,
Ji
,
X. J.
,
Wang
,
H. T.
,
Tian
,
G. Y.
, and
Yao
,
E.
,
2013
, “
An Application of Back Propagation Neural Network for the Steel Stress Detection Based on Barkhausen Noise Theory
,”
NDT&E Int.
,
55
, pp.
9
14
.
12.
Wang
,
P.
,
Ji
,
X. L.
,
Zhu
,
L.
,
Tian
,
G. Y.
, and
Yao
,
E.
,
2013
, “
Stratified Analysis of the Magnetic Barkhausen Noise Signal Based on Wavelet Decomposition and Back Propagation Neural Network
,”
Sens. Actuat. A
,
201
, pp.
421
427
.
13.
Deng
,
Y.
,
2018
,
Research on the Response Factors of Magnetic Barkhausen Noise
,
Beijing University of Chemical Technology
,
Beijing, China
.
14.
Santa-aho
,
S.
,
Laitinen
,
A.
,
Sorsa
,
A.
, and
Vippola
,
M.
,
2019
, “
Barkhausen Noise Probes and Modelling: A Review
,”
J. Nondestr. Eval.
,
38
(
4
), p.
94
.
15.
Tumanski
,
S.
,
2007
, “
Induction Coil Sensors—A Review
,”
Meas. Sci. Technol.
,
18
(
3
), pp.
31
46
.
16.
Zheng
,
Y.
,
Mu
,
R. J.
,
Zhou
,
J. J.
, and
Tan
,
J. D.
,
2020
, “
High-Spatial-Resolution Magnetic Barkhausen Noise Sensor With Shielded Receiver
,”
Sens. Actuat. A
,
316
, p.
112334
.
17.
Gaunkar
,
N. P.
,
Nlebedim
,
C.
, and
Jiles
,
D. C.
,
2015
, “
Approach for Improving the Sensitivity of Barkhausen Noise Sensors With Applications to Magnetic Nondestructive Testing
,”
Mater. Eval.
,
73
(
10
), pp.
1377
1383
.
18.
Muhammad
,
A.
, and
Faiz
,
A.
,
2019
, “
A Review of Processing Techniques for Fe-Ni Soft Magnetic Materials
,”
Mater. Manuf. Processes
,
34
(
14
), pp.
1580
1604
.
19.
Qiao
,
J. L.
,
Guo
,
F. H.
,
Hu
,
J. W.
,
Liu
,
C. X.
, and
Qiu
,
S. T.
,
2021
, “
Development of Thin-Gauge Low Iron Loss Non-Oriented Silicon Steel
,”
Metall. Res. Technol.
,
118
(
1
), p.
113
.
20.
Yeh
,
J. W.
,
Chen
,
S. K.
,
Lin
,
S. J.
,
Gan
,
J. Y.
,
Chin
,
T. S.
,
Shun
,
T. T.
,
Tsau
,
C. H.
, and
Chang
,
S. Y.
,
2004
, “
Nanostructured High Entropy Alloys With Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes
,”
Adv. Eng. Mater.
,
6
(
5
), pp.
299
303
.
21.
Zuo
,
T. T.
,
Ren
,
S. B.
,
Liaw
,
P. K.
, and
Zhang
,
Y.
,
2013
, “
Processing Effects on the Magnetic and Mechanical Properties of FeCoNiA10.2Si0.2 High Entropy Alloy
,”
Int. J. Miner. Metall. Mater.
,
20
(
6
), pp.
549
555
.
22.
Li
,
P. P.
,
Wang
,
A. D.
, and
Liu
,
C. T.
,
2017
, “
Composition Dependence of Structure, Physical and Mechanical Properties of FeCoNi(MnAl)x High Entropy Alloys
,”
Intermetallics
,
87
, pp.
21
26
.
23.
Ma
,
S. G.
, and
Zhang
,
Y.
,
2012
, “
Effect of Nb Addition on the Microstructure and Properties of AlCoCrFeNi High Entropy Alloy.
Mater. Sci. Eng.: A
,
532
, pp.
480
486
.
24.
Zuo
,
T. T.
,
Yang
,
X.
,
Liaw
,
P. K.
, and
Zhang
,
Y.
,
2015
, “
Influence of Bridgman Solidification on Microstructures and Magnetic Behaviors of a Non-Equiatomic FeCoNiAlSi High Entropy Alloy
,”
Intermetallics
,
67
, pp.
171
176
.
25.
Li
,
P. P.
,
Wang
,
A.
, and
Liu
,
C. T.
,
2017
, “
A Ductile High Entropy Alloy With Attractive Magnetic Properties
,”
J. Alloys Compd.
,
694
, pp.
55
60
.
26.
Wang
,
P.
,
Ji
,
X. L.
,
Yan
,
X. M.
,
Zhu
,
L.
,
Wang
,
H. T.
,
Tian
,
G. Y.
, and
Yao
,
E.
,
2013
, “
Investigation of Temperature Effect of Stress Detection Based on Barkhausen Noise
,”
Sens. Actuat. A
,
194
, pp.
232
239
.
27.
Jancula
,
M.
,
Neslusan
,
M.
,
Pastorek
,
F.
,
Pitonak
,
M.
,
Pata
,
V.
,
Minarik
,
P.
, and
Gocal
,
J.
,
2021
, “
Monitoring of Corrosion Extent in Steel S460MC by the Use of Magnetic Barkhausen Noise Emission
,”
ASME J. Nondestr. Eval.
,
40
(
3
), p.
69
.
28.
Fagan
,
P.
,
Ducharne
,
B.
,
Daniel
,
L.
, and
Skarlatos
,
A.
,
2021
, “
Magnetic Barkhausen Noise: A Simulation Tool
,”
AIP Adv.
,
11
(
2
), p.
025322
.
29.
Thompson
,
S. M.
, and
Tanner
,
B. K.
,
1993
, “
The Magnetic Properties of Pearlitic Steels as a Function of Carbon Content
,”
J. Magn. Magn. Mater.
,
123
(
3
), pp.
283
298
.
30.
Rudnev
,
V.
,
Loveless
,
D.
, and
Cook
,
R. L.
,
2017
,
Handbook of Induction Heating
,
CRC Press
,
Boca Raton, FL
.
31.
Seemuang
,
N.
, and
Slatter
,
T.
,
2017
, “
Using Barkhausen Noise to Measure Coating Depth of Coated High-Speed Steel
,”
Int. J. Adv. Manuf. Technol.
,
92
(
1–4
), pp.
247
258
.
32.
Qian
,
Z. C.
, and
Huang
,
H. H.
,
2019
, “
Coupling Fatigue Cohesive Zone and Magnetomechanical Model for Crack Detection in Coating Interface
,”
NDT&E Int.
,
105
, pp.
25
34
.
33.
Qian
,
Z. C.
,
Miao
,
X. L.
,
Wang
,
J.
,
Yang
,
C. L.
,
Zhang
,
W.
,
Chen
,
Z. G.
,
Li
,
G. R.
,
Xu
,
H. M.
,
Cheng
,
H. B.
, and
Huang
,
H. H.
,
2024
, “
Evaluation of the Wear Mechanism of Ferromagnetic Materials Based on Magnetic Barkhausen Noise
,”
Nondestr. Test. Eval.
pp.
1
20
.
34.
Chen
,
J.
,
Zhang
,
B. J.
,
Shu
,
D.
,
Zhou
,
X.
,
Wang
,
W.
, and
Qi
,
X.
,
2011
, “
Improvement of Stress Testing Performance Using Barkhausen Noise Sensor
,”
Sens. Actuat. A
,
168
(
1
), pp.
51
57
.
35.
Zhang
,
Y.
,
Zuo
,
T. T.
,
Tang
,
Z.
,
Gao
,
M. C.
,
Dahmen
,
K. A.
,
Liaw
,
P. K.
, and
Lu
,
Z. P.
,
2014
, “
Microstructures and Properties of High-Entropy Alloys
,”
Prog. Mater. Sci.
,
61
, pp.
1
93
.
36.
Guo
,
S.
, and
Liu
,
C. T.
,
2011
, “
Phase Stability in High Entropy Alloys: Formation of Solid-Solution Phase or Amorphous Phase
,”
Prog. Nat. Sci.: Mater. Int.
,
21
(
6
), pp.
433
446
.
37.
Takeuchi
,
A.
, and
Inoue
,
A.
,
2005
, “
Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element
,”
Mater. Trans.
,
46
(
12
), pp.
2817
2829
.
38.
Yang
,
X.
, and
Zhang
,
Y.
,
2012
, “
Prediction of High-Entropy Stabilized Solid-Solution in Multi-component Alloys
,”
Mater. Chem. Phys.
,
132
(
2–3
), pp.
233
238
.
39.
Zhao
,
R. F.
,
Ren
,
B.
,
Zhang
,
G. P.
,
Liu
,
Z. X.
,
Cai
,
B.
, and
Zhang
,
J.
,
2019
, “
CoCrxCuFeMnNi High-Entropy Alloy Powders With Superior Soft Magnetic Properties
,”
J. Magn. Magn. Mater.
,
491
, p.
165574
.
40.
Chen
,
Z. J.
,
Zhang
,
T.
,
Wu
,
J. J.
,
Yang
,
X. C.
,
Zheng
,
Y. P.
,
Tang
,
Y. B.
,
Yu
,
H. B.
,
Peng
,
J.
, and
Cheng
,
H. M.
,
2024
, “
Optimizing Spin Arrangement by Permeability Modulation of High-Entropy Alloys to Promote O–O Formation for Efficient Water Oxidation
,”
Sci. China Mater.
,
67
(
2
), pp.
598
607
.
41.
Qian
,
Z. C.
,
Yang
,
C. L.
,
Liu
,
H. Y.
,
Zhang
,
W.
,
Chen
,
Z. G.
,
Ge
,
Y. F.
,
Cheng
,
H. B.
, and
Huang
,
H. H.
,
2024
, “
Visualization Evaluation of Damage Degree on Remanufacturing Cores Based on Residual Magnetic Scanning Measurement
,”
Measurement
,
226
, p.
114142
.
You do not currently have access to this content.