Graphical Abstract Figure

Comparison of normalized attenuation coefficient, wave velocity, and relative acoustic nonlinearity parameter as they vary with heating time

Graphical Abstract Figure

Comparison of normalized attenuation coefficient, wave velocity, and relative acoustic nonlinearity parameter as they vary with heating time

Close modal

Abstract

Aging degradation is the main form of failure of rubber in service, leading to a decline in its physical and mechanical properties. This paper presents an efficient method for assessing the aging degradation of rubber using the quasi-static component (QSC) of ultrasonic longitudinal waves induced by acoustic radiation. The experiments quantitatively observe the response of the QSC pulse to different levels of aging degradation. A pulse-echo ultrasonic transducer is employed to simultaneously capture the primary longitudinal wave (PLW) and QSC echoes, enabling the determination of the acoustic nonlinearity parameter of QSC with a single transducer excitation. The results suggest that, in comparison to traditional linear ultrasonic techniques based on attenuation coefficient and wave velocity measurements, the relative acoustic nonlinear parameter of QSC proves to be more sensitive to aging degradation in rubber. Particularly, the amplitude of the QSC pulse undergoes a significant change with increasing aging degradation, even when the PLW tone burst is completely attenuated. These findings confirm the effectiveness of QSC as a method for evaluating aging degradation in highly attenuative materials.

References

1.
Zeng
,
Z.
,
Guo
,
P.
,
Zhang
,
R.
,
Zhao
,
Z.
,
Bao
,
J.
,
Wang
,
Q.
, and
Xu
,
Z.
,
2023
, “
Review of Aging Evaluation Methods for Silicone Rubber Composite Insulators
,”
Polymers
,
15
(
5
), p.
1141
.
2.
Zhou
,
Y.
,
Zhang
,
Y.
,
Zhang
,
L.
,
Guo
,
D.
,
Zhang
,
X.
, and
Wang
,
M.
,
2016
, “
Electrical Tree Initiation of Silicone Rubber After Thermal Aging
,”
IEEE Trans. Dielect. Elect. Insulation
,
23
(
2
), pp.
748
756
.
3.
Panwar
,
R.
, and
Lee
,
J. R.
,
2018
, “
Performance and Non-Destructive Evaluation Methods of Airborne Radome and Stealth Structures
,”
Meas. Sci. Technol.
,
29
(
6
), p.
062001
.
4.
Castellano
,
A.
,
Foti
,
P.
,
Fraddosio
,
A.
,
Galietti
,
U.
,
Marzano
,
S.
, and
Piccioni
,
M. D.
,
2015
, “
Characterization of Material Damage by Ultrasonic Immersion Test
,”
Proc. Eng.
,
109
, pp.
395
402
.
5.
Castellano
,
A.
,
Mazzarisi
,
M.
,
Campanelli
,
S. L.
,
Angelastro
,
A.
,
Fraddosio
,
A.
, and
Piccioni
,
M. D.
,
2020
, “
Ultrasonic Characterization of Components Manufactured by Direct Laser Metal Deposition
,”
Materials
,
13
(
11
), p.
2658
.
6.
Jhang
,
K.
,
2009
, “
Nonlinear Ultrasonic Techniques for Nondestructive Assessment of Micro Damage in Material: A Review
,”
Int. J. Precis. Eng. Manuf.
,
10
(
1
), pp.
123
135
.
7.
Chen
,
H.
,
Zhang
,
G.
,
Fan
,
D.
,
Fang
,
L.
, and
Huang
,
L.
,
2020
, “
Nonlinear Lamb Wave Analysis for Microdefect Identification in Mechanical Structural Health Assessment
,”
Measurement
,
164
, p.
108026
.
8.
Vien
,
B. S.
,
Chiu
,
W. K.
, and
Francis Rose
,
L. R.
,
2018
, “
Experimental Investigation of Second-Harmonic Lamb Wave Generation in Additively Manufactured Aluminum
,”
ASME J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
,
1
(
4
), p.
041003
.
9.
Kanda
,
K.
, and
Lin
,
S.
,
2020
, “
Measurement of Natural Vibrations and Resonant Second Higher-Harmonics Due to a Fatigue Crack
,”
ASME J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
,
3
(
4
), p.
041101
.
10.
Li
,
W.
,
Xu
,
Y.
,
Hu
,
N.
, and
Deng
,
M.
,
2019
, “
Impact Damage Detection in Composites Using a Guided Wave Mixing Technique
,”
Meas. Sci. Technol.
,
31
(
1
), p.
014001
.
11.
Lai
,
Q.
,
Lu
,
L.
,
Xu
,
C.
,
Hu
,
N.
, and
Deng
,
M.
,
2024
, “
A Novel Pulse-Echo Piezoelectric Transducer for Detecting Quasi-Static Component Induced by an Ultrasonic Longitudinal Wave
,”
Meas. Sci. Technol.
,
35
(
3
), p.
035118
.
12.
Wang
,
J.
,
Lai
,
Q.
,
Xu
,
C.
,
Hu
,
N.
, and
Deng
,
M.
,
2023
, “
High-Frequency Ultrasound-Based Thickness Measurement of Highly Attenuating Materials
,”
Meas. Sci. Technol.
,
34
(
3
), p.
035004
.
13.
Sun
,
X.
,
Liu
,
H.
,
Zhao
,
Y.
,
Qu
,
J.
,
Deng
,
M.
, and
Hu
,
N.
,
2020
, “
The Zero-Frequency Component of Bulk Waves in Solids With Randomly Distributed Micro-Cracks
,”
Ultrasonics
,
107
, p.
106172
.
14.
Sun
,
X.
,
Shui
,
G.
,
Zhao
,
Y.
,
Liu
,
W.
,
Hu
,
N.
, and
Deng
,
M.
,
2020
, “
Evaluation of Early Stage Local Plastic Damage Induced by Bending Using Quasi-Static Component of Lamb Waves
,”
NDT & E Int.
,
116
, p.
102332
.
15.
Chen
,
H.
,
Deng
,
M.
,
Gao
,
G.
,
Hu
,
N.
, and
Xiang
,
Y.
,
2021
, “
Modeling and Simulation of Static Component Generation of Lamb Wave Propagation in a Layered Plate
,”
Ultrasonics
,
116
, p.
106473
.
16.
Jiang
,
C.
,
Zhang
,
C.
,
Li
,
W.
,
Deng
,
M.
, and
Ng
,
C.-T.
,
2022
, “
Assessment of Damage in Composites Using Static Component Generation of Ultrasonic Guided Waves
,”
Smart Mater. Struct.
,
31
(
4
), p.
045025
.
17.
Wu
,
K.
,
Xu
,
C.
, and
Deng
,
M.
,
2023
, “
Evaluation of Early-Stage Fatigue Damage in Metal Plates Using Quasi-Static Components of Low-Frequency Lamb Waves
,”
ASME J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
,
6
(
3
), p.
031003
.
18.
Li
,
W.
,
Jiang
,
C.
,
Xiao
,
J.
,
Xu
,
C.
, and
Deng
,
M.
,
2023
, “
Assessment of Thermal Damage in Polymethyl Methacrylate Using Quasi-Static Components of Ultrasonic Waves
,”
J. Nondestruct. Eval.
,
42
(
1
), p.
13
.
19.
Gao
,
G.
,
Xu
,
C.
,
Chen
,
H.
, and
Deng
,
M.
,
2024
, “
Assessment of Early Fatigue in Solid Plates Using Quasi-Static Component by Lamb Wave Propagation Under Group Velocity Matching
,”
NDT & E Int.
,
141
, p.
103001
.
20.
Qu
,
J.
,
Nagy
,
P. B.
, and
Jacobs
,
L. J.
,
2012
, “
Pulse Propagation in an Elastic Medium With Quadratic Nonlinearity (L)
,”
J. Acoust. Soc. Am.
,
131
(
3
), pp.
1827
1830
.
21.
Nagy
,
P. B.
,
1998
, “
Fatigue Damage Assessment by Nonlinear Ultrasonic Materials Characterization
,”
Ultrasonics
,
36
(
1
), pp.
375
381
.
22.
Thimmavajjula Narasimha
,
K.
,
Kannan
,
E.
, and
Balasubramaniam
,
K.
,
2007
, “
Simplified Experimental Technique to Extract the Acoustic Radiation Induced Static Strain in Solids
,”
Appl. Phys. Lett.
,
91
(
13
), p.
134103
.
23.
Deng
,
M.
,
2020
, “
An Experimental Approach for Detection of the Acoustic Radiation Induced Static Component in Solids
,”
Chinese Phys. Lett.
,
37
(
7
), p.
074301
.
24.
Zhang
,
G.
,
Li
,
X.
,
Zhang
,
S.
, and
Kundu
,
T.
,
2021
, “
Investigation of Frequency-Dependent Attenuation Coefficients for Multiple Solids Using a Reliable Pulse-Echo Ultrasonic Measurement Technique
,”
Measurement
,
177
, p.
109270
.
You do not currently have access to this content.