Abstract

Utilizing accurate, nondestructive testing methods to improve quality control and reduce manufacturing errors has gained prominence in light of industry development in various fields. Industrial computed tomography (CT) scanning carries considerable weight among all conventional methods because of their unique features, such as providing a three-dimensional specimen model. Due to the prevalence of metals with high linear attenuation coefficients in industrial applications, beam hardening and scatter artifacts are two of the most prevalent artifacts in any reconstructed volume. Other notable artifacts include those with a nonideal focal spot and conical beam radiation. These artifacts may manifest as a distortion of gray value peaks, systematic discrepancies, blurring-like cupping, and streaking in reconstructed images, degrading volume reconstruction quality. In this paper, the effect of these artifacts is illustrated and mitigated by adopting our proposed method, a combination of conventional and contemporary techniques, including the use of a pretrained convolutional neural network (CNN). Five tests are replicated in different geometric parameters to perform a geometric configuration analysis, indicating how effective the proposed approach is at encountering different geometric situations. The results demonstrate that the proposed method has substantially achieved its goal of improving the accuracy of dimensional metrology performed on our phantom.

References

1.
Gupta
,
M.
,
Khan
,
M. A.
,
Butola
,
R.
, and
Singari
,
R. M.
,
2021
, “
Advances in Applications of Non-Destructive Testing (NDT): A Review
,”
Adv. Mater. Process. Technol.
,
8
(
2
), pp.
2286
2307
.
2.
Haff
,
R. P.
, and
Toyofuku
,
N.
,
2008
, “
X-Ray Detection of Defects and Contaminants in the Food Industry
,”
Sens. Instrum. Food Qual. Saf.
,
2
(
4
), pp.
262
273
.
3.
Hanke
,
R.
,
Fuchs
,
T.
, and
Uhlmann
,
N.
,
2008
, “
X-Ray Based Methods for Non-Destructive Testing and Material Characterization
,”
Nucl. Instrum. Methods Phys. Res. A
,
591
(
1
), pp.
14
18
.
4.
Kotwaliwale
,
N.
,
Singh
,
K.
,
Kalne
,
A.
,
Jha
,
S. N.
,
Seth
,
N.
, and
Kar
,
A.
,
2014
, “
X-Ray Imaging Methods for Internal Quality Evaluation of Agricultural Produce
,”
J. Food Sci. Technol.
,
51
(
1
), pp.
1
15
.
5.
Zou
,
Y.
,
Du
,
D.
,
Chang
,
B.
,
Ji
,
L.
, and
Pan
,
J.
,
2015
, “
Automatic Weld Defect Detection Method Based on Kalman Filtering for Real-Time Radiographic Inspection of Spiral Pipe
,”
NDT & E Int.
,
72
, pp.
1
9
.
6.
Xu
,
J.
,
Liu
,
T.
,
Yin
,
X. M.
,
Wong
,
B. S.
, and
Hassan
,
S. B.
,
2010
, “
Automatic X-Ray Crack Inspection for Aircraft Wing Fastener Holes
,”
2nd International Symposium on NDT in Aerospace
,
Hamburg, Germany
,
Nov. 22–24
.
7.
Carmignato
,
S.
,
Dewulf
,
W.
, and
Leach
,
R.
,
2018
,
Industrial X-Ray Computed Tomography
, ed.,
Springer
,
New York
.
8.
de Schryver
,
T.
,
Dhaene
,
J.
,
Dierick
,
M.
,
Boone
,
M. N.
,
Janssens
,
E.
,
Sijbers
,
J.
,
van Dael
,
M.
, et al
,
2016
, “
In-Line NDT With X-Ray CT Combining Sample Rotation and Translation
,”
NDT & E Int.
,
84
, pp.
89
98
.
9.
International Atomic Energy Agency
,
2020
, “
An Introduction to Practical Industrial Tomography Techniques for Non-destructive Testing (NDT)
,” No. 1931. https://www.iaea.org/publications/12325/an-introduction-to-practical-industrial-tomography-techniques-for-non-destructive-testing-ndt
10.
Hiller
,
J.
,
Maisl
,
M.
, and
Reindl
,
L. M.
,
2012
, “
Physical Characterization and Performance Evaluation of an X-Ray Micro-Computed Tomography System for Dimensional Metrology Applications
,”
Meas. Sci. Technol.
,
23
(
8
), p.
85404
.
11.
Yan
,
C. H.
,
Whalen
,
R. T.
,
Beaupre
,
G. S.
,
Yen
,
S. Y.
, and
Napel
,
S.
,
2000
, “
Reconstruction Algorithm for Polychromatic CT Imaging: Application to Beam Hardening Correction
,”
IEEE Trans. Med. Imaging
,
19
(
1
), pp.
1
11
.
12.
Ingle
,
J. D.
, Jr.
, and
Crouch
,
S. R
,
1988
,
Spectrochemical Analysis
,
Prentice Hall College Book Division
,
Old Tappan, NJ
.
13.
Brooks
,
R. A.
, and
di Chiro
,
G.
,
1976
, “
Beam Hardening in X-Ray Reconstructive Tomography
,”
Phys. Med. Biol.
,
21
(
3
), pp.
390
398
.
14.
Hsieh
,
J.
,
2003
,
Computed Tomography: Principles, Design, Artifacts, and Recent Advance
,
SPIE Press
,
Bellingham, WA
.
15.
McDavid
,
W. D.
,
Waggener
,
R. G.
,
Payne
,
W. H.
, and
Dennis
,
M. J.
,
1975
, “
Spectral Effects on Three-Dimensional Reconstruction From X Rays
,”
Med. Phys.
,
2
(
6
), pp.
321
324
.
16.
Zatz
,
L. M.
, and
Alvarez
,
R. E.
,
1977
, “
An Inaccuracy in Computed Tomography: the Energy Dependence of CT Values
,”
Radiology
,
124
(
1
), pp.
91
97
.
17.
Duerinckx
,
A. J.
, and
Macovski
,
A.
,
1978
, “
Polychromatic Streak Artifacts in Computed Tomography Images
,”
J. Comput. Assist. Tomogr.
,
2
(
4
), pp.
481
487
.
18.
Rao
,
P. S.
, and
Alfidi
,
R. J.
,
1981
, “
The Environmental Density Artifact: A Beam-Hardening Effect in Computed Tomography
,”
Radiology
,
141
(
1
), pp.
223
227
.
19.
Schorner
,
K.
,
Goldammer
,
M.
,
Stierstorfer
,
K.
,
Stephan
,
J.
, and
Boni
,
P.
,
2012
, “
Scatter Correction Method by Temporal Primary Modulation in X-Ray CT
,”
IEEE Trans. Nucl. Sci.
,
59
(
6
), pp.
3278
3285
.
20.
Sorenson
,
J. A.
, and
Floch
,
J.
,
1985
, “
Scatter Rejection by Air Gaps: An Empirical Model
,”
Med. Phys.
,
12
(
3
), pp.
308
316
.
21.
Rajendran
,
K.
,
Walsh
,
M. F.
,
de Ruiter
,
N. J. A.
,
Chernoglazov
,
A. I.
,
Panta
,
R. K.
,
Butler
,
A. P. H.
,
Butler
,
P. H.
, et al
,
2014
, “
Reducing Beam Hardening Effects and Metal Artefacts in Spectral CT Using Medipix3RX
,”
J. Instrum.
9
(
03
), p.
P03015
.
22.
Ri-Feng
,
Z.
,
Jue
,
W.
, and
Wei-Min
,
C.
,
2009
, “
Synchrotron Radiation, Free Electron Laser, Application of Nuclear Technology, etc.: X-Ray Beam Hardening Correction for Measuring Density in Linear Accelerator Industrial Computed Tomography
,”
Chin. Phys. C
,
33
(
7
), pp.
599
602
.
23.
Kimoto
,
N.
,
Hayashi
,
H.
,
Asahara
,
T.
,
Mihara
,
Y.
,
Kanazawa
,
Y.
,
Yamakawa
,
T.
,
Yamamoto
,
S.
, et al
,
2017
, “
Precise Material Identification Method Based on a Photon Counting Technique With Correction of the Beam Hardening Effect in X-Ray Spectra
,”
Appl. Radiat. Isotop.
,
124
, pp.
16
26
.
24.
Nomura
,
Y.
,
Xu
,
Q.
,
Shirato
,
H.
,
Shimizu
,
S.
, and
Xing
,
L.
,
2019
, “
Projection-Domain Scatter Correction for Cone Beam Computed Tomography Using a Residual Convolutional Neural Network
,”
Med. Phys.
,
46
(
7
), pp.
3142
3155
.
25.
Kachelrieß
,
M.
,
Berkus
,
T.
,
Stenner
,
P.
, and
Kalender
,
W. A.
,
2006
, “
Empirical Dual Energy Calibration (EDEC) for Cone-Beam Computed Tomography
,”
2006 IEEE Nuclear Science Symposium Conference Record
,
San Diego, CA
,
Oct. 29–Nov. 4
, Vol. 4, pp.
2546
2550
.
26.
Stenner
,
P.
,
Berkus
,
T.
, and
Kachelriess
,
M.
,
2007
, “
Empirical Dual Energy Calibration (EDEC) for Cone-Beam Computed Tomography
,”
Med. Phys.
,
34
(
9
), pp.
3630
3641
.
27.
Reiter
,
M.
,
de Oliveira
,
F. B.
,
Bartscher
,
M.
,
Gusenbauer
,
C.
, and
Kastner
,
J.
,
2019
, “
Case Study of Empirical Beam Hardening Correction Methods for Dimensional X-Ray Computed Tomography Using a Dedicated Multi-Material Reference Standard
,”
J. Nondestr. Eval.
,
38
(
1
), pp.
1
15
.
28.
Kachelrieß
,
M.
,
Sourbelle
,
K.
, and
Kalender
,
W. A.
,
2006
, “
Empirical Cupping Correction: A First-Order Raw Data Precorrection for Cone-Beam Computed Tomography
,”
Med. Phys.
,
33
(
5
), pp.
1269
1274
.
29.
Palenstijn
,
W. J.
,
Batenburg
,
K. J.
, and
Sijbers
,
J.
,
2013
, “
The ASTRA Tomography Toolbox
,”
13th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE
,
Almeria, Spain
,
June 24–27
, pp.
1139
1145
.
30.
Kwan
,
A. L. C.
,
Seibert
,
J. A.
, and
Boone
,
J. M.
,
2006
, “
An Improved Method for Flat-Field Correction of Flat Panel X-Ray Detector
,”
Med. Phys.
,
33
(
2
), pp.
391
393
.
31.
Zhang
,
K.
,
Zuo
,
W.
,
Chen
,
Y.
,
Meng
,
D.
, and
Zhang
,
L.
,
2017
, “
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
,”
IEEE Trans. Image Process.
,
26
(
7
), pp.
3142
3155
.
You do not currently have access to this content.