Abstract

In-situ monitoring techniques for additive manufacturing are in high demand to help produce reliable parts. The structural integrity of these parts depends on both the presence of flaws and their microstructure. Ultrasonic Rayleigh waves have the potential to identify flaws and assess the local microstructure during directed energy deposition (DED) additive manufacturing processes, but the scattering associated with the surface roughness degrades the ultrasonic signal and must be understood to extract useful information. Herein, the microstructures and surface profiles of DED and wrought Ti–6Al–4V are compared to provide context for measured Rayleigh wave speeds and second harmonic generation. The Rayleigh wave speed and second harmonic generation for DED and wrought Ti–6Al–4V materials having comparable surface roughness are significantly different. The wave speed measured in DED material is 3% slower than in wrought material, and the relative nonlinearity parameter, commonly used to characterize second harmonic generation, is 3.5–6.0 times higher for polished surfaces. Wave speed and second harmonic generation measurements are also made along the hatch and across the hatch for both as-built and glazed DED surfaces. Based on our results, we conclude that in-situ Rayleigh wave linear and nonlinear measurements are possible; although we acknowledge that in-situ angle-beam transducer generation would be challenging, and thus we will investigate pulsed laser generation in future work.

References

1.
Brandt
,
M.
,
2017
,
Laser Additive Manufacturing
,
Elsevier
,
New York
.
2.
Tofail
,
S. A. M.
,
Koumoulos
,
E. P.
,
Bandyopadhyay
,
A.
,
Bose
,
S.
,
O’Donoghue
,
L.
, and
Charitidis
,
C.
,
2018
, “
Additive Manufacturing: Scientific and Technological Challenges, Market Uptake and Opportunities
,”
Mater. Today
,
21
(
1
), pp.
22
37
.
3.
Kim
,
H.
,
Lin
,
Y.
, and
Tseng
,
T.-L. B.
,
2018
, “
A Review on Quality Control in Additive Manufacturing
,”
Rapid Prototyp. J.
,
24
(
3
), pp.
645
669
.
4.
Brennan
,
M. C.
,
Keist
,
J. S.
, and
Palmer
,
T. A.
,
2021
, “
Defects in Metal Additive Manufacturing Processes
,”
J. Mater. Eng. Perform.
,
30
(
7
), pp.
4808
4818
.
5.
Snow
,
Z.
,
Nassar
,
A. R.
, and
Reutzel
,
E. W.
,
2020
, “
Invited Review Article: Review of the Formation and Impact of Flaws in Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
36
, p.
101457
.
6.
Sames
,
W. J.
,
List
,
F. A.
,
Pannala
,
S.
,
Dehoff
,
R. R.
, and
Babu
,
S. S.
,
2016
, “
The Metallurgy and Processing Science of Metal Additive Manufacturing
,”
Int. Mater. Rev.
,
61
(
5
), pp.
315
360
.
7.
Trevisan
,
R. E.
,
Schwemmer
,
D. D.
, and
Olson
,
D. L.
,
1990
, “Chap. 3 – The Fundamentals of Weld Metal Pore Formation,”
Welding
,
D. L.
Olson
,
R.
Dixon
, and
A. L.
Liby
, eds., Vol.
8
, pp.
79
115
.
8.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Tschopp
,
M. A.
,
Doude
,
H. R.
,
Marufuzzaman
,
M.
, and
Bian
,
L.
,
2019
, “
In-Situ Monitoring of Melt Pool Images for Porosity Prediction in Directed Energy Deposition Processes
,”
IISE Trans.
,
51
(
5
), pp.
437
455
.
9.
Vilaro
,
T.
,
Colin
,
C.
, and
Bartout
,
J. D.
,
2011
, “
As-Fabricated and Heat-Treated Microstructures of the Ti–6Al–4V Alloy Processed by Selective Laser Melting
,”
Metall. Mater. Trans. A
,
42
(
10
), pp.
3190
3199
.
10.
Kim
,
F. H.
, and
Moylan
,
S. P.
,
2018
,
Literature Review of Metal Additive Manufacturing Defects
,
NIST AMS
,
Gaithersburg, MD
, pp.
100
116
.
11.
Zekovic
,
S.
,
Dwivedi
,
R.
, and
Kovacevic
,
R.
,
2007
, “
Numerical Simulation and Experimental Investigation of Gas–Powder Flow From Radially Symmetrical Nozzles in Laser-Based Direct Metal Deposition
,”
Int. J. Mach. Tools Manuf.
,
47
(
1
), pp.
112
123
.
12.
Stutzman
,
C. B.
,
Nassar
,
A. R.
, and
Reutzel
,
E. W.
,
2018
, “
Multi-Sensor Investigations of Optical Emissions and Their Relations to Directed Energy Deposition Processes and Quality
,”
Addit. Manuf.
,
21
, pp.
333
339
.
13.
DebRoy
,
T.
,
Wei
,
H. L.
,
Zuback
,
J. S.
,
Mukherjee
,
T.
,
Elmer
,
J. W.
,
Milewski
,
J. O.
,
Beese
,
A. M.
,
Wilson-Heid
,
A.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components—Process, Structure and Properties
,”
Prog. Mater. Sci.
,
92
, pp.
112
224
.
14.
Gorelik
,
M.
,
2017
, “
Additive Manufacturing in the Context of Structural Integrity
,”
Int. J. Fatigue
,
94
, pp.
168
177
.
15.
Galindo-Fernández
,
M. A.
,
Mumtaz
,
K.
,
Rivera-Díaz-del-Castillo
,
P. E. J.
,
Galindo-Nava
,
E. I.
, and
Ghadbeigi
,
H.
,
2018
, “
A Microstructure Sensitive Model for Deformation of Ti–6Al–4V Describing Cast-and-Wrought and Additive Manufacturing Morphologies
,”
Mater. Des.
,
160
, pp.
350
362
.
16.
Gong
,
H.
,
Rafi
,
K.
,
Gu
,
H.
,
Starr
,
T.
, and
Stucker
,
B.
,
2014
, “
Analysis of Defect Generation in Ti–6Al–4V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes
,”
Addit. Manuf.
,
1
, pp.
87
98
.
17.
Malekipour
,
E.
, and
El-Mounayri
,
H.
,
2018
, “
Common Defects and Contributing Parameters in Powder Bed Fusion AM Process and Their Classification for Online Monitoring and Control: A Review
,”
Int. J. Adv. Manuf. Technol.
,
95
(
1–4
), pp.
527
550
.
18.
Reutzel
,
E. W.
, and
Nassar
,
A. R.
,
2015
, “
A Survey of Sensing and Control Systems for Machine and Process Monitoring of Directed-Energy, Metal-Based Additive Manufacturing
,”
Rapid Prototyp. J.
,
21
(
2
), pp.
159
167
.
19.
Boddu
,
M. R.
,
Landers
,
R. G.
, and
Liou
,
F. W.
,
2001
, “
Control of Laser Cladding for Rapid Prototyping—A Review
,”
Proceedings of the 2001 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 6–8
, pp.
460
467
.
20.
Everton
,
S. K.
,
Hirsch
,
M.
,
Stravroulakis
,
P.
,
Leach
,
R. K.
, and
Clare
,
A. T.
,
2016
, “
Review of In-Situ Process Monitoring and In-Situ Metrology for Metal Additive Manufacturing
,”
Mater. Des.
,
95
, pp.
431
445
.
21.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
.
22.
Bi
,
G.
,
Schürmann
,
B.
,
Gasser
,
A.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2007
, “
Development and Qualification of a Novel Laser-Cladding Head With Integrated Sensors
,”
Int. J. Mach. Tools Manuf.
,
47
(
3–4
), pp.
555
561
.
23.
Hofman
,
J. T.
,
Pathiraj
,
B.
,
van Dijk
,
J.
,
de Lange
,
D. F.
, and
Meijer
,
J.
,
2012
, “
A Camera Based Feedback Control Strategy for the Laser Cladding Process
,”
J. Mater. Process. Technol.
,
212
(
11
), pp.
2455
2462
.
24.
Bi
,
G.
,
Gasser
,
A.
,
Wissenbach
,
K.
,
Drenker
,
A.
, and
Poprawe
,
R.
,
2006
, “
Identification and Qualification of Temperature Signal for Monitoring and Control in Laser Cladding
,”
Opt. Lasers Eng.
,
44
(
12
), pp.
1348
1359
.
25.
Song
,
L.
, and
Mazumder
,
J.
,
2011
, “
Feedback Control of Melt Pool Temperature During Laser Cladding Process
,”
IEEE Trans. Control Syst. Technol.
,
19
(
6
), pp.
1349
1356
.
26.
Fathi
,
A.
,
Khajepour
,
A.
,
Toyserkani
,
E.
, and
Durali
,
M.
,
2007
, “
Clad Height Control in Laser Solid Freeform Fabrication Using a Feedforward PID Controller
,”
Int. J. Adv. Manuf. Technol.
,
35
(
3–4
), pp.
280
292
.
27.
Zeinali
,
M.
, and
Khajepour
,
A.
,
2010
, “
Height Control in Laser Cladding Using Adaptive Sliding Mode Technique: Theory and Experiment
,”
ASME J. Manuf. Sci. Eng.
,
132
(
4
), p.
041016
.
28.
Heralić
,
A.
,
Christiansson
,
A.-K.
, and
Lennartson
,
B.
,
2012
, “
Height Control of Laser Metal-Wire Deposition Based on Iterative Learning Control and 3D Scanning
,”
Opt. Lasers Eng.
,
50
(
9
), pp.
1230
1241
.
29.
Song
,
L.
, and
Mazumder
,
J.
,
2012
, “
Real Time Cr Measurement Using Optical Emission Spectroscopy During Direct Metal Deposition Process
,”
IEEE Sens. J.
,
12
(
5
), pp.
958
964
.
30.
Honarvar
,
F.
, and
Varvani-Farahani
,
A.
,
2020
, “
A Review of Ultrasonic Testing Applications in Additive Manufacturing: Defect Evaluation, Material Characterization, and Process Control
,”
Ultrasonics
,
108
, p.
106227
.
31.
Rieder
,
H.
,
Spies
,
M.
,
Bamberg
,
J.
, and
Henkel
,
B.
,
2016
, “
On-and Offline Ultrasonic Characterization of Components Built by SLM Additive Manufacturing
,”
Proceedings of the AIP Conference Proceedings
,
Minneapolis, MN
,
July 26–31, 2015
,
AIP Publishing LLC
, Vol. 1706, p.
130002
.
32.
Nagy
,
P. B.
,
1998
, “
Fatigue Damage Assessment by Nonlinear Ultrasonic Materials Characterization
,”
Ultrasonics
,
36
(
1–5
), pp.
375
381
.
33.
Walker
,
S. V.
,
Kim
,
J. Y.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2012
, “
Fatigue Damage Evaluation in A36 Steel Using Nonlinear Rayleigh Surface Waves
,”
NDT E Int.
,
48
, pp.
10
15
.
34.
Matlack
,
K. H.
,
Bradley
,
H. A.
,
Thiele
,
S.
,
Kim
,
J.-Y.
,
Wall
,
J. J.
,
Jung
,
H. J.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2015
, “
Nonlinear Ultrasonic Characterization of Precipitation in 17-4PH Stainless Steel
,”
NDT E Int.
,
71
, pp.
8
15
.
35.
Doerr
,
C.
,
Kim
,
J. Y.
,
Singh
,
P.
,
Wall
,
J. J.
, and
Jacobs
,
L. J.
,
2017
, “
Evaluation of Sensitization in Stainless Steel 304 and 304L Using Nonlinear Rayleigh Waves
,”
NDT E Int.
,
88
, pp.
17
23
.
36.
Jhang
,
K.-Y.
,
Lissenden
,
C. J.
,
Solodov
,
I.
,
Ohara
,
Y.
, and
Gusev
,
V.
,
2020
,
Measurement of Nonlinear Ultrasonic Characteristics; Springer Series in Measurement Science and Technology
,
Springer
,
Singapore
.
37.
Millon
,
C.
,
Vanhoye
,
A.
,
Obaton
,
A.-F.
, and
Penot
,
J.-D.
,
2018
, “
Development of Laser Ultrasonics Inspection for Online Monitoring of Additive Manufacturing
,”
Weld. World
,
62
(
3
), pp.
653
661
.
38.
Cerniglia
,
D.
,
Scafidi
,
M.
,
Pantano
,
A.
, and
Rudlin
,
J.
,
2015
, “
Inspection of Additive-Manufactured Layered Components
,”
Ultrasonics
,
62
, pp.
292
298
.
39.
Pieris
,
D.
,
Stratoudaki
,
T.
,
Javadi
,
Y.
,
Lukacs
,
P.
,
Catchpole-Smith
,
S.
,
Wilcox
,
P. D.
,
Clare
,
A.
, and
Clark
,
M.
,
2019
, “
Laser Induced Phased Arrays (LIPA) to Detect Nested Features in Additively Manufactured Components
,”
Mater. Des.
,
187
, p.
108412
.
40.
Davis
,
G.
,
Nagarajah
,
R.
,
Palanisamy
,
S.
,
Rashid
,
R. A. R.
,
Rajagopal
,
P.
, and
Balasubramaniam
,
K.
,
2019
, “
Laser Ultrasonic Inspection of Additive Manufactured Components
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5–8
), pp.
2571
2579
.
41.
Smith
,
R. J.
,
Hirsch
,
M.
,
Patel
,
R.
,
Li
,
W.
,
Clare
,
A. T.
, and
Sharples
,
S. D.
,
2016
, “
Spatially Resolved Acoustic Spectroscopy for Selective Laser Melting
,”
J. Mater. Process. Technol.
,
236
, pp.
93
102
.
42.
Dong
,
Z.
,
Liu
,
Y.
,
Wen
,
W.
,
Ge
,
J.
, and
Liang
,
J.
,
2018
, “
Effect of Hatch Spacing on Melt Pool and As-Built Quality During Selective Laser Melting of Stainless Steel: Modeling and Experimental Approaches
,”
Materials
,
12
(
1
), p.
50
.
43.
Maamoun
,
A. H.
,
Xue
,
Y. F.
,
Elbestawi
,
M. A.
, and
Veldhuis
,
S. C.
,
2018
, “
Effect of Selective Laser Melting Process Parameters on the Quality of Al Alloy Parts: Powder Characterization, Density, Surface Roughness, and Dimensional Accuracy
,”
Materials
,
11
(
12
), p.
2343
.
44.
Foster
,
S.
,
Carver
,
K.
,
Dinwiddie
,
R.
,
List
,
F.
,
Unocic
,
K.
,
Chaudhary
,
A.
, and
Babu
,
S.
,
2018
, “
Process-Defect-Structure-Property Correlations During Laser Powder Bed Fusion of Alloy 718: Role of In Situ and Ex Situ Characterizations
,”
Metall. Mater. Trans. A
,
49
(
11
), pp.
5775
5798
.
45.
Yasa
,
E.
, and
Kruth
,
J.-P.
,
2011
, “
Application of Laser Re-melting on Selective Laser Melting Parts
,”
Adv. Prod. Eng. Manag.
,
6
(
4
), pp.
259
270
.
46.
Alrbaey
,
K.
,
Wimpenny
,
D.
,
Tosi
,
R.
,
Manning
,
W.
, and
Moroz
,
A.
,
2014
, “
On Optimization of Surface Roughness of Selective Laser Melted Stainless Steel Parts: A Statistical Study
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
2139
2148
.
47.
Rombouts
,
M.
,
Maes
,
G.
,
Hendrix
,
W.
,
Delarbre
,
E.
, and
Motmans
,
F.
,
2013
, “
Surface Finish After Laser Metal Deposition
,”
Phys. Procedia
,
41
, pp.
810
814
.
48.
Alfieri
,
V.
,
Argenio
,
P.
,
Caiazzo
,
F.
, and
Sergi
,
V.
,
2016
, “
Reduction of Surface Roughness by Means of Laser Processing Over Additive Manufacturing Metal Parts
,”
Materials
,
10
(
1
), p.
30
.
49.
Nečas
,
D.
, and
Klapetek
,
P.
,
2012
, “
Gwyddion: An Open-Source Software for SPM Data Analysis
,”
Open Phys.
,
10
(
1
), pp.
181
188
.
50.
Bakre
,
C.
, and
Lissenden
,
C. J.
,
2021
, “
Surface Roughness Effects on Self-Interacting and Mutually Interacting Rayleigh Waves
,”
Sensors
,
21
(
16
), p.
5495
.
51.
Frigo
,
M.
, and
Johnson
,
S. G.
, “
. FFTW: An Adaptive Software Architecture for the FFT
,”
Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP ‘98 (Cat. No.98CH36181)
,
Seattle, WA
,
May 12–15
,
IEEE
; Vol. 3, pp.
1381
1384
.
52.
Krylov
,
V.
, and
Smirnova
,
Z.
,
1990
, “
Experimental Study of the Dispersion of a Rayleigh Wave on a Rough Surface
,”
Sov. Phys. Acoust.
,
36
(
6
), pp.
583
585
. https://repository.lboro.ac.uk/account/articles/9225590
53.
Eguiluz
,
A. G.
, and
Maradudin
,
A. A.
,
1983
, “
Frequency Shift and Attenuation Length of a Rayleigh Wave Due to Surface Roughness
,”
Phys. Rev. B
,
28
(
2
), pp.
728
747
.
54.
De Billy
,
M.
,
Quentin
,
G.
, and
Baron
,
E.
,
1987
, “
Attenuation Measurements of an Ultrasonic Rayleigh Wave Propagating Along Rough Surfaces
,”
J. Appl. Phys.
,
61
(
6
), pp.
2140
2145
.
55.
Sinclair
,
R.
,
1971
, “
Velocity Dispersion of Rayleigh Waves Propagating Along Rough Surfaces
,”
J. Acoust. Soc. Am.
,
50
(
3B
), pp.
841
845
.
56.
Akhtar
,
A.
, and
Teghtsoonian
,
E.
,
1975
, “
Prismatic Slip in α-Titanium Single Crystals
,”
Metall. Trans. A
,
6
(
12
), p.
2201
.
57.
Justinger
,
H.
, and
Hirt
,
G.
,
2009
, “
Estimation of Grain Size and Grain Orientation Influence in Microforming Processes by Taylor Factor Considerations
,”
J. Mater. Process. Technol.
,
209
(
4
), pp.
2111
2121
.
58.
Hikata
,
A.
, and
Elbaum
,
C.
,
1966
, “
Generation of Ultrasonic Second and Third Harmonics Due to Dislocations. I
,”
Phys. Rev.
,
144
(
2
), pp.
469
477
.
59.
Cantrell
,
J.
,
2003
, “
Fundamentals and Applications of Nonlinear Ultrasonic Nondestructive Evaluation
,”
Ultrasonic Nondestructive Evaluation
,
T.
Kundu
, ed.,
CRC Press
,
Boca Raton, FL
, pp.
363
443
.
60.
Gorsse
,
S.
,
Hutchinson
,
C.
,
Gouné
,
M.
, and
Banerjee
,
R.
,
2017
, “
Additive Manufacturing of Metals: A Brief Review of the Characteristic Microstructures and Properties of Steels, Ti–6Al–4V and High-Entropy Alloys
,”
Sci. Technol. Adv. Mater.
,
18
(
1
), pp.
584
610
.
61.
Krakhmalev
,
P.
,
Fredriksson
,
G.
,
Yadroitsava
,
I.
,
Kazantseva
,
N.
,
Plessis
,
A. d.
, and
Yadroitsev
,
I.
,
2016
, “
Deformation Behavior and Microstructure of Ti6Al4V Manufactured by SLM
,”
Phys. Procedia
,
83
, pp.
778
788
.
62.
Prasad
,
R.
, and
Kumar
,
S.
,
1994
, “
Study of the Influence of Deformation and Thermal Treatment on the Ultrasonic Behaviour of Steel
,”
J. Mater. Process. Technol.
,
42
(
1
), pp.
51
59
.
63.
Vasudevan
,
M.
,
Palanichamy
,
P.
, and
Venkadesan
,
S.
,
1994
, “
A Novel Technique for Characterizing Annealing Behaviour
,”
Scr. Metall. Mater.
,
30
(
11
), pp.
1479
1483
.
64.
Palanichamy
,
P.
,
Joseph
,
A.
,
Jayakumar
,
T.
, and
Raj
,
B.
,
1995
, “
Ultrasonic Velocity Measurements for Estimation of Grain Size in Austenitic Stainless Steel
,”
NDT E Int.
,
28
(
3
), pp.
179
185
.
65.
Papadakis
,
E. P.
,
1970
, “
Ultrasonic Attenuation and Velocity in SAE 52100 Steel Quenched From Various Temperatures
,”
Metall. Trans.
,
1
(
4
), pp.
1053
1057
.
66.
Papadakis
,
E. P.
,
1964
, “
Ultrasonic Attenuation and Velocity in Three Transformation Products in Steel
,”
J. Appl. Phys.
,
35
(
5
), pp.
1474
1482
.
67.
Gür
,
C. H.
, and
Tuncer
,
B. O.
,
2005
, “
Characterization of Microstructural Phases of Steels by Sound Velocity Measurement
,”
Mater. Charact.
,
55
(
2
), pp.
160
166
.
68.
Karthik
,
N.
,
Gu
,
H.
,
Pal
,
D.
,
Starr
,
T.
, and
Stucker
,
B.
,
2013
, “
High Frequency Ultrasonic Non Destructive Evaluation of Additively Manufactured Components
,”
24th International Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 12–14, pp.
311
325
.
69.
Hikata
,
A.
,
Chick
,
B. B.
, and
Elbaum
,
C.
,
1965
, “
Dislocation Contribution to the Second Harmonic Generation of Ultrasonic Waves
,”
J. Appl. Phys.
,
36
(
1
), pp.
229
236
.
70.
Kim
,
J.-Y.
,
Jacobs
,
L. J.
,
Qu
,
J.
, and
Littles
,
J. W.
,
2006
, “
Experimental Characterization of Fatigue Damage in a Nickel-Base Superalloy Using Nonlinear Ultrasonic Waves
,”
J. Acoust. Soc. Am.
,
120
(
3
), pp.
1266
1273
.
71.
Kim
,
C.
,
Hyun
,
C.
,
Park
,
I.
, and
Jhang
,
K.
,
2012
, “
Ultrasonic Characterization for Directional Coarsening in a Nickel-Based Superalloy During Creep Exposure
,”
J. Nucl. Sci. Technol.
,
49
(
4
), pp.
366
372
.
You do not currently have access to this content.