Abstract

These days, piezoelectric energy harvesting (PEH) is introduced as one of the clean and renewable energy sources for powering the self-powered sensors utilized for wireless condition monitoring of structures. However, low efficiency is the biggest drawback of PEHs. This paper introduces an innovative embedded metamaterial subframe (MetaSub) patch as a practical solution to address the low throughput limitation of conventional PEHs whose host structure has already been constructed or installed. To evaluate the performance of the embedded MetaSub patch (EMSP), a cantilever beam is considered as the host structure in this study. The EMSP transfers the auxetic behavior to the piezoelectric element (PZT) wherever substituting a regular beam with an auxetic beam is either impracticable or suboptimal. The concept of the EMSP is numerically validated, and the comsol multiphysics software was employed to investigate its performance when a cantilever beam is subjected to different amplitude and frequency. The finite element model results demonstrate that the harvesting power in cases that use the EMSP can be amplified up to 5.5 times compared to a piezoelectric cantilever energy harvester without patch. This paper opens up a great potential of using EMSP for different types of energy harvesting systems in biomedical, acoustics, civil, electrical, aerospace, and mechanical engineering applications.

References

1.
Troy
,
J. J.
,
Georgeson
,
G. E.
,
Nelson
,
K. E.
, and
Lea
,
S. W.
,
2014
, U.S. Patent No. 8,713,998.
Washington, DC
:
U.S. Patent and Trademark Office
.
2.
Yue
,
N.
,
Khodaei
,
Z. S.
, and
Aliabadi
,
M. H.
,
2021
, “
Damage Detection in Large Composite Stiffened Panels Based on a Novel SHM Building Block Philosophy
,”
Smart Mater. Struct.
,
30
(
4
), p.
045004
.
3.
Ihn
,
J.-B.
, and
Chang
,
F.-K.
,
2008
, “
Pitch-Catch Active Sensing Methods in Structural Health Monitoring for Aircraft Structures
,”
Struct. Health. Monit.
,
7
(
1
), pp.
5
19
.
4.
Zamen
,
S.
, and
Dehghan-Niri
,
E.
,
2020
, “
Fractal Analysis of Nonlinear Ultrasonic Waves in Phase-Space Domain as a Quantitative Method for Damage Assessment of Concrete Structures
,”
NDT&E Int.
,
111
, p.
102235
.
5.
Farhangdoust
,
S.
,
Mederos
,
C.
,
Farkiani
,
B.
,
Mehrabi
,
A.
,
Taheri
,
H.
, and
Younesian
,
D.
,
2020
, “
A Creative Vibration Energy Harvesting System to Support a Self-Powered Internet of Thing (IoT) Network in Smart Bridge Monitoring
,”
ASME International Mechanical Engineering Congress and Exposition
,
IMECE - Virtual Conference
,
November
.
6.
Mokhtari
,
S.
, and
Yen
,
K. K.
,
2021
, “
Impact of Large-Scale Wind Power Penetration on Incentive of Individual Investors, a Supply Function Equilibrium Approach
,”
Electr. Power Syst. Res.
,
194
, p.
107014
.
7.
Wang
,
Y.
,
Yang
,
Z.
,
Li
,
P.
,
Cao
,
D.
,
Huang
,
W.
, and
Inman
,
D. J.
,
2020
, “
Energy Harvesting for Jet Engine Monitoring
,”
Nano Energy
, p.
104853
.
8.
Liu
,
Y.
,
Khanbareh
,
H.
,
Halim
,
M. A.
,
Feeney
,
A.
,
Zhang
,
X.
,
Heidari
,
H.
, and
Ghannam
,
R.
,
2021
, “
Piezoelectric Energy Harvesting for Self-Powered Wearable Upper Limb Applications
,”
Nano Select.
, pp.
1
21
.
9.
Salehi
,
H.
,
Burgueño
,
R.
,
Chakrabartty
,
S.
,
Lajnef
,
N.
, and
Alavi
,
A. H.
,
2021
, “
A Comprehensive Review of Self-powered Sensors in Civil Infrastructure: State-of-the-Art and Future Research Trends
,”
Eng. Struct.
,
234
, p.
111963
.
10.
Allam
,
A.
,
Sabra
,
K.
, and
Erturk
,
A.
,
2021
, “
Sound Energy Harvesting by Leveraging a 3D-Printed Phononic Crystal Lens
,”
Appl. Phys. Lett.
,
118
(
10
), p.
103504
.
11.
Li
,
Q.
,
Kuang
,
Y.
, and
Zhu
,
M.
,
2017
, “
Auxetic Piezoelectric Energy Harvesters for Increased Electric Power Output
,”
AIP Adv.
,
7
(
1
), p.
015104
.
12.
Krishnaswamy
,
J. A.
,
Buroni
,
F. C.
,
Melnik
,
R.
,
Rodriguez-Tembleque
,
L.
, and
Saez
,
A.
,
2020
, “
Design of Polymeric Auxetic Matrices for Improved Mechanical Coupling in Lead-Free Piezocomposites
,”
Smart Mater. Struct.
,
29
(
5
), p.
054002
.
13.
Sugino
,
C.
,
Ruzzene
,
M.
, and
Erturk
,
A.
,
2020
, “
Nonreciprocal Piezoelectric Metamaterial Framework and Circuit Strategies
,”
Phys. Rev. B
,
102
(
1
), p.
014304
.
14.
Kelkar
,
P. U.
,
Kim
,
H. S.
,
Cho
,
K.-H.
,
Kwak
,
J. Y.
,
Kang
,
C.-Y.
, and
Song
,
H.-C.
,
2020
, “
Cellular Auxetic Structures for Mechanical Metamaterials: A Review
,”
Sensors
,
20
(
11
), p.
3132
.
15.
Zhang
,
S. L.
,
Lai
,
Y. C.
,
He
,
X.
,
Liu
,
R.
,
Zi
,
Y.
, and
Wang
,
Z. L.
,
2017
, “
Auxetic Foam-Based Contact-Mode Triboelectric Nanogenerator With Highly Sensitive Self-powered Strain Sensing Capabilities to Monitor Human Body Movement
,”
Adv. Funct. Mater.
,
27
(
25
), p.
1606695
.
16.
Farhangdoust
,
S.
,
Aghaei
,
S. M.
,
Amirahmadi
,
M.
,
Pala
,
N.
, and
Mehrabi
,
A.
,
2020
, “
Auxetic MEMS Sensor
,”
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2020
,
International Society for Optics and Photonics
,
Virtual Conference
,
April
, Vol.
11379
, p.
113790Z
.
17.
Zega
,
V.
,
Nastro
,
A.
,
Ferrari
,
M.
,
Ardito
,
R.
,
Ferrari
,
V.
, and
Corigliano
,
A.
,
2019
, “
Design, Fabrication and Experimental Validation of a MEMS Periodic Auxetic Structure
,”
Smart Mater. Struct.
,
28
(
9
), p.
095011
.
18.
Qi
,
D.
,
Yu
,
H.
,
Hu
,
W.
,
He
,
C.
,
Wu
,
W.
, and
Ma
,
Y.
,
2019
, “
Bandgap and Wave Attenuation Mechanisms of Innovative Reentrant and Anti-chiral Hybrid Auxetic Metastructure
,”
Extreme Mech. Lett.
,
28
, pp.
58
68
.
19.
Wang
,
H.
,
Zhang
,
Y.
,
Lin
,
W.
, and
Qin
,
Q. H.
,
2020
, “
A Novel Two-Dimensional Mechanical Metamaterial With Negative Poisson’s Ratio
,”
Comput. Mater. Sci.
,
171
, p.
109232
.
20.
Zhang
,
X. C.
,
An
,
C. C.
,
Shen
,
Z. F.
,
Wu
,
H. X.
,
Yang
,
W. G.
, and
Bai
,
J. P.
,
2020
, “
Dynamic Crushing Responses of Bio-inspired Re-entrant Auxetic Honeycombs Under In-plane Impact Loading
,”
Mater. Today Commun.
,
23
, p.
100918
.
21.
Farhangdoust
,
S.
,
2020
, “Auxetic Cantilever Beam Energy Harvester,”
Smart Structures and NDE for Industry 4.0, Smart Cities, and Energy Systems
,
International Society for Optics and Photonics
,
Virtual Conference
,
Vol. 11382
, p.
113820V
.
22.
Yang
,
Z.
,
Zhou
,
S.
,
Zu
,
J.
, and
Inman
,
D.
,
2018
, “
High-performance Piezoelectric Energy Harvesters and Their Applications
,”
Joule
,
2
(
4
), pp.
642
697
.
23.
Farhangdoust
,
S.
,
Georgeson
,
G.
,
Ihn
,
J. B.
, and
Chang
,
F. K.
,
2020
, “
Kirigami Auxetic Structure for High Efficiency Power Harvesting in Self-powered and Wireless Structural Health Monitoring Systems
,”
Smart Mater. Struct.
,
30
(
1
), p.
015037
.
24.
Ferguson
,
W. J.
,
Kuang
,
Y.
,
Evans
,
K. E.
,
Smith
,
C. W.
, and
Zhu
,
M.
,
2018
, “
Auxetic Structure for Increased Power Output of Strain Vibration Energy Harvester
,”
Sens. Actuators, A
,
282
, pp.
90
96
.
25.
Alderson
,
A.
, and
Alderson
,
K. L.
,
2007
, “
Auxetic Materials
,”
Proc. Inst. Mech. Eng., Part G
,
221
(
4
), pp.
565
575
.
26.
Truby
,
R. L.
,
Della Santina
,
C.
, and
Rus
,
D.
,
2020
, “
Distributed Proprioception of 3D Configuration in Soft, Sensorized Robots via Deep Learning
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
3299
3306
.
27.
Sun
,
R.
,
Carreira
,
S. C.
,
Chen
,
Y.
,
Xiang
,
C.
,
Xu
,
L.
,
Zhang
,
B.
,
Chen
,
M.
,
Farrow
,
I.
,
Scarpa
,
F.
, and
Rossiter
,
J.
,
2019
, “
Stretchable Piezoelectric Sensing Systems for Self-powered and Wireless Health Monitoring
,”
Adv. Mater. Technol.
,
4
(
5
), p.
1900100
.
You do not currently have access to this content.