Abstract

Bearing remnant operational life can be determined by implementing a data-driven prognostics method. In this work, the bearing run-to-failure data from experimentation on test rig is used to extract time-domain features. The sudden change in time-domain information signifies the fault inception which led to failure stage promptly. The monotonicity metric is utilized to select the optimal feature set that best represents bearing degradation. Principal component analysis (PCA) is used for dimension reduction and fusion, and a unidimensional health indicator (HI) is constructed. Fluctuations of HI are smoothed by fitting it with a Weibull failure rate function (WFRF) and the corresponding parameters are estimated using nonlinear least-squares method. By inverting the model, the predicted time values are calculated, and hence remnant operational life of bearing is evaluated and compared with the actual life from experimental data. The performance assessment metrics utilized are mean absolute percentage error (MAPE), mean-square error (MSE), root-mean-square error (RMSE), and bias. Besides this, an online degradation state classification method using the k-nearest neighbor (KNN) classifier is implemented. The KNN model performance is assessed by constructing receiver operating characteristics (ROC) curve, which indicates the value of area under the curve (AUC) equal to 0.94, representing high accuracy of the KNN. The remaining useful life (RUL) is predicted within 95% confidence limits, and the predicted RUL almost follows the actual one with some fluctuations. The model performance is found promising and can be implemented to evaluate the remaining useful life of bearing.

References

1.
Niu
,
G.
,
Qian
,
F.
, and
Choi
,
B.-K.
,
2016
, “
Bearing Life Prognosis Based on Monotonic Feature Selection and Similarity Modeling
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
230
(
18
), pp.
3183
3193
.
2.
Nistane
,
V. M.
, and
Harsha
,
S. P.
,
2018
, “
Prognosis of Degradation Progress of Ball Bearings Using Supervised Machine Learning
,”
Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn.
,
232
(
2
), pp.
183
198
.
3.
Nistane
,
V. M.
, and
Harsha
,
S. P.
,
2016
, “
Failure Evaluation of Ball Bearing for Prognostics
,”
Procedia Technol.
,
23
, pp.
179
186
. 3rd.
4.
Saxena
,
A.
,
Celaya
,
J.
,
Balaban
,
E.
,
Goebel
,
K.
,
Saha
,
B.
,
Saha
,
S.
, and
Schwabacher
,
M.
,
2008
, “
Metrics for Evaluating Performance of Prognostic Techniques
,”
2008 International Conference on Prognostics and Health Management
,
Denver, CO
,
Oct. 6
,
IEEE
, pp.
1
17
.
5.
Saxena
,
A.
,
Celaya
,
J.
,
Saha
,
B.
,
Saha
,
S.
, and
Goebel
,
K.
,
2009
, “
On Applying the Prognostic Performance Metrics
,” Annual Conference of the Prognostics and Health Management Society, Vol.
9
, pp.
1
16
.
6.
Ray
,
A.
, and
Tangirala
,
S.
,
1996
, “
Stochastic Modeling of Fatigue Crack Dynamics for On-Line Failure Prognostics
,”
IEEE Trans. Control Syst. Technol.
,
4
(
4
), pp.
443
451
.
7.
Cheng
,
W.
, and
Cheng
,
H. S.
,
1997
, “
Semi-Analytical Modeling of Crack Initiation Dominant Contact Fatigue Life for Roller Bearings
,”
ASME. J. Tribol.
,
119
(
2
), pp.
233
240
.
8.
Cadini
,
F.
,
Zio
,
E.
, and
Avram
,
D. I. A. N. A.
,
2009
, “
Monte Carlo-Based Filtering for Fatigue Crack Growth Estimation
,”
Probab. Eng. Mech.
,
24
(
3
), pp.
367
373
.
9.
Pandya
,
D. H.
,
Upadhyay
,
S. H.
, and
Harsha
,
S. P.
,
2013
, “
Fault Diagnosis of Rolling Element Bearing With Intrinsic Mode Function of Acoustic Emission Data Using APF-KNN
,”
Expert Syst. Appl.
,
40
(
10
), pp.
4137
4145
.
10.
Lim
,
C. K. R.
, and
Mba
,
D.
,
2015
, “
Switching Kalman Filter for Failure Prognostic
,”
Mech. Syst. Signal Process.
,
52
, pp.
426
435
.
11.
Gebraeel
,
N.
,
Lawley
,
M.
,
Liu
,
R.
, and
Parmeshwaran
,
V.
,
2004
, “
Residual Life Predictions From Vibration-Based Degradation Signals: A Neural Network Approach
,”
IEEE Trans. Ind. Electron.
,
51
(
3
), pp.
694
700
.
12.
Kubat
,
M.
, and
Cooperson
,
M.
, Jr.
,
2001
, “
A Reduction Technique for Nearest-Neighbor Classification: Small Groups of Examples
,”
Intell. Data Anal.
,
5
(
6
), pp.
463
476
.
13.
Moosavian
,
A.
,
Ahmadi
,
H.
,
Tabatabaeefar
,
A.
, and
Khazaee
,
M.
,
2013
, “
Comparison of Two Classifiers; K-Nearest Neighbor and Artificial Neural Network, for Fault Diagnosis on a Main Engine Journal-Bearing
,”
Shock Vib.
,
20
(
2
), pp.
263
272
.
14.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2011
, “
Fault Diagnosis of Ball Bearings Using Machine Learning Methods
,”
Expert Syst. Appl.
,
38
(
3
), pp.
1876
1886
.
15.
Ali
,
J. B.
,
Chebel-Morello
,
B.
,
Saidi
,
L.
,
Malinowski
,
S.
, and
Fnaiech
,
F.
,
2015
, “
Accurate Bearing Remaining Useful Life Prediction Based on Weibull Distribution and Artificial Neural Network
,”
Mech. Syst. Signal Process.
,
56
, pp.
150
172
.
16.
Mahamad
,
A. K.
,
Saon
,
S.
, and
Hiyama
,
T.
,
2010
, “
Predicting Remaining Useful Life of Rotating Machinery Based Artificial Neural Network
,”
Comput. Math. Appl.
,
60
(
4
), pp.
1078
1087
.
17.
Hu
,
Y.
,
Liu
,
S.
,
Lu
,
H.
, and
Zhang
,
H.
,
2014
, “
Remaining Useful Life Assessment and Its Application in the Decision for Remanufacturing
,”
Procedia CIRP
,
15
, pp.
212
217
.
18.
Li
,
X.
,
Ding
,
Q.
, and
Sun
,
J.-Q.
,
2018
, “
Remaining Useful Life Estimation in Prognostics Using Deep Convolution Neural Networks
,”
Reliab. Eng. Syst. Saf.
,
172
, pp.
1
11
.
19.
Yu
,
W.
,
Kim
,
I. Y.
, and
Mechefske
,
C.
,
2019
, “
Remaining Useful Life Estimation Using a Bidirectional Recurrent Neural Network Based Autoencoder Scheme
,”
Mech. Syst. Signal Process.
,
129
, pp.
764
780
.
20.
Ren
,
L.
,
Sun
,
Y.
,
Cui
,
J.
, and
Zhang
,
L.
,
2018
, “
Bearing Remaining Useful Life Prediction Based on Deep Autoencoder and Deep Neural Networks
,”
J. Manuf. Syst.
,
48
, pp.
71
77
.
21.
Sharma
,
A.
,
Amarnath
,
M.
, and
Kankar
,
P. K.
,
2018
, “
Life Assessment and Health Monitoring of Rolling Element Bearings: An Experimental Study
,”
Life Cycle Reliab. Saf. Eng.
,
7
(
2
), pp.
97
114
.
22.
Liao
,
H.
, and
Tian
,
Z.
,
2013
, “
A Framework for Predicting the Remaining Useful Life of a Single Unit Under Time-Varying Operating Conditions
,”
Iie Trans.
,
45
(
9
), pp.
964
980
.
23.
Malhi
,
A.
, and
Gao
,
R. X.
,
2004
, “
PCA-Based Feature Selection Scheme for Machine Defect Classification
,”
IEEE Trans. Instrum. Meas.
,
53
(
6
), pp.
1517
1525
.
24.
Gharibnezhad
,
F.
,
Mujica
,
L. E.
, and
Rodellar
,
J.
,
2015
, “
Applying Robust Variant of Principal Component Analysis as a Damage Detector in the Presence of Outliers
,”
Mech. Syst. Signal Process.
,
50
, pp.
467
479
.
25.
Lu
,
C. J.
, and
Meeker
,
W. O.
,
1993
, “
Using Degradation Measures to Estimate a Time-to-Failure Distribution
,”
Technometrics
,
35
(
2
), pp.
161
174
.
26.
Qiu
,
H.
,
Lee
,
J.
,
Lin
,
J.
, and
Yu
,
G.
,
2003
, “
Robust Performance Degradation Assessment Methods for Enhanced Rolling Element Bearing Prognostics
,”
Adv. Eng. Inform.
,
17
(
3–4
), pp.
127
140
.
27.
Pearson
,
K.
,
1901
, “
LIII. On Lines and Planes of Closest Fit to Systems of Points in Space
,”
London Edinburgh Dublin Philos. Mag. J. Sci.
,
2
(
11
), pp.
559
572
.
28.
Aşıkgil
,
B.
,
2017
, “
Robust Nonlinear Least Squares Approaches for Evaluating OVA-Mediated Bleaching Reactions: An Experimental Comparative Study
,”
Gazi Univ. J. Sci.
,
30
(
4
), pp.
599
608
.
29.
Chu
,
Y.-K.
, and
Ke
,
J.-C.
,
2012
, “
Computation Approaches for Parameter Estimation of Weibull Distribution
,”
Math. Comput. Appl.
,
17
(
1
), pp.
39
47
.
30.
Kundu
,
P.
,
Darpe
,
A. K.
, and
Kulkarni
,
M. S.
,
2019
, “
Weibull Accelerated Failure Time Regression Model for Remaining Useful Life Prediction of Bearing Working Under Multiple Operating Conditions
,”
Mech. Syst. Signal Process.
,
134
, p.
106302
.
You do not currently have access to this content.