Abstract

Forecasting and detection of fatigue cracks play a key role in damage mitigation of mechanical structures (e.g., those made of polycrystalline alloys) to enhance their service life, and ultrasonic testing (UT) has emerged as a powerful tool for detection of fatigue cracks at early stages of damage evolution. Along this line, the work reported in this paper aims to improve the performance of fatigue crack forecasting and detection based on a synergistic combination of discrete wavelet transform (DWT) and Hilbert transform (HT) of UT data, collected from a computer-instrumented and computer-controlled fatigue-testing apparatus. Performance of the proposed method is evaluated by comparison with the images generated from a digital microscope, which are treated as the ground truth in this paper. The results of comparison reveal that forthcoming fatigue cracks can be detected ahead of their appearance on the surface of test specimens. The proposed method apparently outperforms both HT and conventional DWT, when they are applied individually, because the synergistic combination of DWT and HT provides a better characterization of UT signal attenuation for detection of fatigue crack damage.

References

1.
Ohring
,
M.
, and
Kasprzak
,
L.
,
1998
,
Chapter 9-Degradation of Contacts and Package Interconnections
,
M.
Ohring
, ed.,
Academic Press
,
Cambridge, MA
, pp.
475
537
.
2.
Hopkins
,
P.
,
2003
, “
The Structural Integrity of Oil and Gas Transmission Pipelines
,”
Comprehensive Struct. Int.
,
1
, pp.
87
123
. 10.1016/B0-08-043749-4/01004-1
3.
Wong
,
W.
,
2010
, “
Asset Integrity: Learning About the Cause and Symptoms of Age and Decay and the Need for Maintenance to Avoid Catastrophic Failures
,”
Risk Manage. Safety Dependability
, pp.
188
225
. 10.1533/9781845699383.188
4.
Ray
,
A.
, and
Patankar
,
R.
,
2001
, “
Fatigue Crack Growth Under Variable-Amplitude Loading: Part I—Model Formulation in State-Space Setting
,”
Appl. Math. Model.
,
25
(
11
), pp.
979
994
. 10.1016/S0307-904X(01)00026-9
5.
Ray
,
A.
, and
Patankar
,
R.
,
2001
, “
Fatigue Crack Growth Under Variable-Amplitude Loading: Part II—Code Development and Model Validation
,”
Appl. Math. Model.
,
25
(
11
), pp.
995
1013
. 10.1016/S0307-904X(01)00027-0
6.
Cawley
,
P.
,
2001
, “
Non-destructive Testing—Current Capabilities and Future Directions
,”
Proc. I MECH E Part L J. Mater.:Des. Appl.
,
215
(
4
), pp.
213
223
. 10.1243/1464420011545058
7.
Gholizadeh
,
S.
,
2016
, “
A Review of Non-destructive Testing Methods of Composite Materials
,”
Proc. Struct. Integrity
,
1
, pp.
50
57
. 10.1016/j.prostr.2016.02.008
8.
Singh
,
R.
,
2016
, “
Ultrasonic Testing
,”
Appl. Weld. Eng.
, pp.
343
355
.
9.
Campbell
,
F. C.
,
2013
,
Inspection of Metals: Understanding the Basics
,
ASM International
,
Materials Park, OH
.
10.
Birks
,
A. S.
,
Greene
,
R. E.
, and
Moore
,
P.
,
1991
,
Nondestructive Testing Handbook, Vol. 7. Ultrasonic Testing
,
American Society for Nondestructive Testing
,
Columbus, OH
.
11.
Garnier
,
C.
,
Pastor
,
M.-L.
,
Eyma
,
F.
, and
Lorrain
,
B.
,
2011
, “
The Detection of Aeronautical Defects In Situ on Composite Structures Using Non Destructive Testing
,”
Compos. Struct.
,
93
(
5
), pp.
1328
1336
. 10.1016/j.compstruct.2010.10.017
12.
Shull
,
P. J.
,
2002
,
Nondestructive Evaluation: Theory, Techniques, and Applications
,
CRC Press
,
Boca Raton, FL
.
13.
Kaiser
,
G.
,
1994
,
A Friendly Guide to Wavelets
,
Birkhauser
,
Boston, MA
.
14.
Mallat
,
S.
,
2009
,
A Wavelet Tour of Signal Processing: The Sparse Way
, 3rd ed.,
Academic Publishers
,
Amsterdam
.
15.
Yu
,
D.
,
Cheng
,
J.
, and
Yang
,
Y.
,
2005
, “
Application of Emd Method and Hilbert Spectrum to the Fault Diagnosis of Roller Bearings
,”
Mech. Syst. Signal Process.
,
19
(
2
), pp.
259
270
. 10.1016/S0888-3270(03)00099-2
16.
Fan
,
X.
, and
Zuo
,
M. J.
,
2006
, “
Gearbox Fault Detection Using Hilbert and Wavelet Packet Transform
,”
Mech. Syst. Signal Process.
,
20
(
4
), pp.
966
982
. 10.1016/j.ymssp.2005.08.032
17.
Klingspor
,
M.
,
2015
,
Hilbert Transform: Mathematical Theory and Applications to Signal processing
,
DiVA Linköping University
,
Linköping
. urn:nbn:se:liu:diva-122736
18.
Yang
,
Y.
,
2017
, “
A Signal Theoretic Approach for Envelope Analysis of Real-Valued Signals
,”
IEEE Access
,
5
, pp.
5623
5630
. 10.1109/ACCESS.2017.2688467.
19.
Feldman
,
M.
,
2011
, “
Hilbert Transform in Vibration Analysis
,”
Mech. Syst. Signal Process.
,
25
(
3
), pp.
735
802
. 10.1016/j.ymssp.2010.07.018
20.
Daubechies
,
I.
,
1992
,
Ten Lectures on Wavelets
,
SIAM Publishers
,
Philadelphia, PA
.
21.
Debnath
,
L.
, and
Shah
,
F. A.
,
2015
,
Wavelet Transforms and Their Applications
,
Springer
,
Boston, MA
.
22.
Sang
,
Y.-F.
,
2012
, “
A Practical Guide to Discrete Wavelet Decomposition of Hydrologic Time Series
,”
Water Res. Manage.
,
26
(
11
), pp.
3345
3365
. 10.1007/s11269-012-0075-4
23.
Goel
,
A.
,
2014
, “
Discrete Wavelet Transform (DWT) With Two Channel Filter Bank and Decoding in Image Texture Analysis
,”
Int. J. Sci. Res.
,
3
(
4
), pp.
391
397
.
24.
Lee
,
B.
, and
Tarng
,
Y.
,
1999
, “
Application of the Discrete Wavelet Transform to the Monitoring of Tool Failure in End Milling Using the Spindle Motor Current
,”
Int. J. Adv. Manuf. Technol.
,
15
(
4
), pp.
238
243
. 10.1007/s001700050062
25.
Alonso
,
G. A.
,
Gutiérrez
,
J. M.
,
Marty
,
J.-L.
, and
Muñoz
,
R.
,
2011
,
Implementation of the Discrete Wavelet Transform Used in the Calibration of the Enzymatic Biosensors
,
Intechopen
,
London, UK
, pp.
135
153
.
26.
Olivier
,
R.
, and
Vetterli
,
M.
,
1991
, “
Wavelets and Signal Processing
,”
IEEE Sig. Process.
,
8
(
4
), pp.
14
38
. 10.1109/79.91217
27.
Oliveira
,
M. O.
, and
Bretas
,
A. S.
,
2009
, “
Application of Discrete Wavelet Transform for Differential Protection of Power Transformers
,”
2009 IEEE Bucharest PowerTech
,
Bucharest, Romania
,
June 28–July 2
, pp.
1
8
.
28.
Kschischang
,
F. R.
,
2006
, “
The Hilbert Transform
,”
Univ. Toronto
,
83
, p.
277
.
You do not currently have access to this content.