Peak density is an ultrasound measurement, which has been found to vary according to microstructure, and is defined as the number of local extrema within the resulting power spectrum of an ultrasound measurement. However, the physical factors which influence peak density are not fully understood. This work studies the microstructural characteristics which affect peak density through experimental, computationa,l and analytical means for high-frequency ultrasound of 22–41 MHz. Experiments are conducted using gelatin-based phantoms with glass microsphere scatterers with diameters of 5, 9, 34, and 69 μm and number densities of 1, 25, 50, 75, and 100 mm−3. The experiments show the peak density to vary according to the configuration. For example, for phantoms with a number density of 50 mm−3, the peak density has values of 3, 5, 9, and 12 for each sphere diameter. Finite element simulations are developed and analytical methods are discussed to investigate the underlying physics. Simulated results showed similar trends in the response to microstructure as the experiment. When comparing scattering cross section, peak density was found to vary similarly, implying a correlation between the total scattering and the peak density. Peak density and total scattering increased predominately with increased particle size but increased with scatterer number as well. Simulations comparing glass and polystyrene scatterers showed dependence on the material properties. Twenty-four of the 56 test cases showed peak density to be statistically different between the materials. These values behaved analogously to the scattering cross section.

References

1.
Lizzi
,
F. L.
,
Greenebaum
,
E. J.
, and
Elbaum
,
M.
,
1983
, “
Theoretical Framework for Spectrum Analysis in Ultrasonic Tissue Characterization
,”
J. Acoust. Soc. Am.
,
73
(
4
), pp.
1366
1373
.
2.
Lizzi
,
F. L.
,
Ostromogilsky
,
M.
,
Feleppa
,
E. J.
,
Rorke
,
M. C.
, and
Yaremko
,
M. M.
,
1987
, “
Relationship of Ultrasonic Spectral Parameters to Features of Tissue Microstructure
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
34
(
3
), pp.
319
329
.
3.
Feleppa
,
E. J.
,
Lizzi
,
F. L.
, and
Coleman
,
D. J.
,
1986
, “
Diagnostic Spectrum Analysis in Ophthalmology: A Physical Perspective
,”
Ultrason, Med. Biol.
,
12
(
8
), pp.
623
631
.
4.
Tadayyon
,
H.
,
Sadeghi-Naini
,
A.
,
Wirtzfeld
,
L.
,
Wright
,
F.
, and
Czarnota
,
G.
,
2014
, “
Quantitative Ultrasound Characterization of Locally Advanced Breast Cancer by Estimation of Its Scatterer Properties
,”
Med. Phys.
,
41
(
1
), p.
012903
.
5.
Coleman
,
D. J.
,
Lizzi
,
F. L.
,
Silverman
,
R. H.
,
Helson
,
L.
,
Torpey
,
J. H.
, and
Rondeau
,
M. J.
,
1985
, “
A Model for Acoustic Characterization of Intraocular Tumors
,”
Invest. Ophthalmol. Visual Sci.
,
26
(4), pp.
545
550
https://iovs.arvojournals.org/article.aspx?articleid=2177088.
6.
Feleppa
,
E. J.
,
Kalisz
,
A.
,
Sokil-Melgar
,
J. B.
,
Lizzi
,
F. L.
,
Rosado
,
A. L.
,
Shao
,
M. C.
,
Fair
,
W. R.
,
Cookson
,
M. S.
,
Reuter
,
V. E.
, and
Heston
,
D. W.
,
1996
, “
Typing of Prostate Tissue by Ultrasonic Spectrum Analysis
,”
IEEE Trans. Ultrason. Ferroelectr.
,
43
, pp.
609
619
.
7.
Yang
,
M.
,
Krueger
,
T. M.
,
Miller
,
J. G.
, and
Holland
,
M. R.
,
2007
, “
Characterization of Anisotropic Myocardial Backscatter Using Spectral Slope, Intercept and Midband Fit Parameters
,”
Ultrason. Imaging
,
29
(
2
), pp.
122
134
.
8.
Mamou
,
J.
,
Coron
,
A.
,
Hata
,
M.
,
Machi
,
J.
,
Yanagihara
,
E.
,
Laugier
,
P.
, and
Feleppa
,
E. J.
,
2010
, “
Three-Dimensional High-Frequency Characterization of Cancerous Lymph Nodes
,”
Ultrason. Med. Biol.
,
36
(
3
), pp.
361
375
.
9.
Sigelmann
,
R. A.
, and
Reid
,
J. M.
,
1973
, “
Analysis and Measurement of Ultrasound Backscattering From an Ensemble of Scatterers Excited by Sine-Wavebursts
,”
J. Acoust. Soc. Am
,
53
(
5
), pp.
1351
1355
.
10.
Bamber
,
J. C.
,
Hill
,
C. R.
,
King
,
J. A.
, and
Dunn
,
F.
,
1979
, “
Ultrasonic Propagation Through Fixed and Unfixed Tissues
,”
Ultrason. Med. Biol.
,
5
(
2
), pp.
159
165
.
11.
Nicholas
,
D.
,
1982
, “
Evaluation of Backscattering Coefficients for Excised Human Tissues, Results, Interpretation, and Associated Measurements
,”
Ultrason. Med. Biol.
,
8
(
1
), pp.
17
28
.
12.
D'Astous
,
F. T.
, and
Foster
,
F. S.
,
1986
, “
Frequency Dependence of Ultrasound Attenuation and Backscatter in Breast Tissue
,”
Ultrason. Med. Biol.
,
12
(
10
), pp.
795
808
.
13.
Ueda
,
M.
, and
Ozawa
,
Y.
,
1985
, “
Spectral Analysis of Echoes for Backscattering Coefficient Measurements
,”
J. Acoust. Soc. Am.
,
77
(
1
), pp.
38
47
.
14.
Insana
,
M. F.
,
Wagner
,
R. F.
,
Brown
,
D. G.
, and
Hall
,
T. J.
,
1990
, “
Describing Small-Scale Structure in Random Media Using Pulse-Echo Ultrasound
,”
J. Acoust. Soc. Am.
,
87
(
1
), pp.
179
192
.
15.
Yao
,
L. X.
,
Zagzebski
,
J. A.
, and
Madsen
,
E. L.
,
1990
, “
Backscatter Coefficient Measurements Using a Reference Phantom to Extract Depth-Dependent Instrumentation Factors
,”
Ultrason. Imaging
,
12
(
1
), pp.
58
70
.
16.
Chen
,
X.
,
Phillips
,
D.
,
Schwarz
,
K. Q.
,
Mottley
,
J. G.
, and
Parker
,
K. J.
,
1997
, “
The Measurement of Backscatter Coefficient From a Broadband Pulse-Echo System: A New Formation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
44
(
2
), pp.
515
525
.
17.
O'Donnell
,
M.
, and
Miller
,
J. G.
,
1981
, “
Quantitative Broadband Ultrasonic Backscatter: An Approach to Nondestructive Evaluation in Acoustically Inhomogeneous Materials
,”
J. Appl. Phys.
,
52
(
2
), pp.
1056
1065
.
18.
Oelze
,
M. L.
, and
O'Brien
,
W. D.
,
2002
, “
Frequency-Dependent Attenuation-Compensation Functions for Ultrasonic Signals Backscattered From Random Media
,”
J. Acoust. Soc. Am.
,
111
(
5
), pp.
2308
2319
.
19.
Lavarello
,
R. J.
,
Ghoushal
,
G.
, and
Oelze
,
M. L.
,
2011
, “
On the Estimation of Backscatter Coefficients Using Single-Element Focused Transducers
,”
J. Acoust. Soc. Am.
,
129
(
5
), pp.
2903
2911
.
20.
Krautkrämer
,
J.
, and
Krautkrämer
,
H.
,
1990
,
Ultrasonic Testing of Materials
,
Springer-Verlag
,
Berlin
.
21.
Kossoff
,
G.
,
Fry
,
E.
, and
Jellins
,
J.
,
1973
, “
Average Velocity of Ultrasound in the Human Female Breast
,”
J. Acoust. Soc. Am.
,
53
(
6
), pp.
1730
1736
.
22.
Li
,
C.
,
Huang
,
L.
,
Duric
,
N.
,
Zhang
,
H.
, and
Rowe
,
C.
,
2009
, “
An Improved Automatic Time-of-Flight Picker for Medical Ultrasound Tomography
,”
Ultrasonics
,
49
(
1
), pp.
61
72
.
23.
Wiskin
,
J.
,
Borup
,
D.
,
Johnson
,
S.
, and
Berggren
,
M.
,
2012
, “
Non-Linear Inverse Scattering: High Resolution Quantitative Breast Tissue Tomography
,”
J. Acoust. Soc. Am.
,
131
(
5
), pp.
3802
3813
.
24.
Jago
,
J. R.
, and
Whittingham
,
T. A.
,
1991
, “
Experimental Studies in Transmission Ultrasound Computed Tomography
,”
Phys. Med. Biol.
,
36
(
11
), pp.
1515
1527
.
25.
Greenleaf
,
J. F.
, and
Bahn
,
R. C.
,
1981
, “
Clinical Imaging With Transmissive Ultrasonic Computerized Tomography
,”
Biomed. Eng.
,
28
(
5
). pp.
177
185
.
26.
Hirsekorn
,
S.
,
van Andel
,
P. W.
, and
Netzelmann
,
U.
,
1998
, “
Ultrasonic Methods to Detect and Evaluate Damage in Steel
,”
Nondestr. Test. Eval.
,
15
(
6
), pp.
373
393
.
27.
Daniel
,
I. M.
,
Wooh
,
S. C.
, and
Komsky
,
I.
,
1992
, “
Quantitative Porosity characterization of composite Materials by Means of Ultrasonic Attenuation Measurements
,”
J. Nondestr. Eval.
,
11
(
1
), pp.
1
8
.
28.
Yim
,
H. J.
,
Kwak
,
H.
, and
Kim
,
J. H.
,
2012
, “
Wave Attenuation Measurement Technique for Nondestructive Evaluation of Concrete
,”
Nondestr. Test. Eval.
,
27
(
1
), pp.
81
94
.
29.
Doyle
,
T. E.
,
Factor
,
R. E.
,
Ellefson
,
C. L.
,
Sorensen
,
K. M.
,
Ambrose
,
B. J.
,
Goodrich
,
J. B.
,
Hart
,
V. P.
,
Jensen
,
S. C.
,
Patel
,
H.
, and
Neumayer
,
L. A.
,
2011
, “
High-Frequency Ultrasound for Intraoperative Margin Assessments in Breast Conservation Surgery: A Feasibility Study
,”
BMC Cancer
,
11
(
1
), p.
444
.
30.
Stromer
,
J.
, and
Ladani
,
L.
,
2015
, “
Investigating Ultrasonic Imaging in the Frequency Domain for Tissue Characterisation
,”
Nondestruct. Test. Eval.
,
31
(
3
), pp.
209
218
.
31.
Bude
,
R.
, and
Adler
,
R.
,
1995
, “
An Easily Made, Low‐Cost, Tissue‐Like Ultrasound Phantom Material
,”
J. Clin. Ultrason.
,
23
(
4
), pp.
271
273
.
32.
Stromer
,
J.
, and
Ladani
,
L.
,
2018
, “
Examination of a Spectral-Based Ultrasonic Analysis Method for Materials Characterization and Evaluation
,”
Biomed. Signal Process. Control
,
40
, pp.
454
461
.
33.
Faran
,
J. J.
,
1951
, “
Sound Scattering by Solid Cylinders and Spheres
,”
J. Acoust. Soc. Am.
,
23
(
4
), pp.
405
418
.
34.
Morse
,
P. M.
, and
Ungard
,
K. U.
,
1968
,
Theoretical Acoustics
,
Princeton University Press
,
Princeton, NJ
.
35.
Mechel
,
F. P.
,
2002
,
Formulas of Acoustics
,
Springer-Verlag
,
Berlin
.
36.
Crocker
,
M. J.
,
1998
,
Handbook of Acoustics
,
Wiley
,
New York
.
37.
Ishimaru
,
A.
,
1978
,
Wave Propagation and Scattering in Random Media
, Vol. 1,
Academic Press
,
New York
.
38.
Wakefield
,
R. J.
, and
D'Agostino
,
M. A.
,
2010
,
Essential Applications of Musculoskeletal Ultrasound in Rheumatology
,
Saunders Elsevier
,
Philadelphia, PA
.
39.
Arfken
,
G.
, and
Weber
,
H. J.
,
2005
,
Mathematical Methods for Physicists
, 6th ed.,
Elsevier
,
Burlington, MA
.
You do not currently have access to this content.