Thirteen long tibia (bovine) bones were utilized in vitro to experimentally extract modal frequencies in the cranial-caudal (C-C) and medial–lateral (M–L) planes. Bones were instrumented with four single-axis accelerometers uniformly placed along the length of the bone and hammer impacted at different locations in both planes. Frequency response function (FRF) and complex mode indicator function (CMIF) techniques were used to identify the modal frequencies. CMIF has an advantage of detecting closely spaced modes by excluding misinterpreted peaks. It was found that the difference between the two methods did not exceed 2.98%. CMIF data were more consistent when varying impact location. The effect of bone's geometrical attributes on modal frequencies was statistically scrutinized and highly correlated parameters were identified. Bone length exhibited high correspondence to frequencies (p < 0.05) for practically all modes. Also, four simple equations were developed, relating modes 1 and 2 in the C-C and M-L planes to bone length. To determine the first and second modal shapes, subset of 6 tibia bones was further instrumented. Mode shapes were extracted in the C-C and M-L planes.

References

1.
Van der Perre
,
G.
, and
Lowet
,
G.
,
1996
, “
In Vivo Assessment of Bone Mechanical Properties by Vibration and Ultrasonic Wave Propagation Analysis
,”
Bone
,
18
(
1
), pp.
S29
S35
.
2.
Doherty
,
W. P.
,
1971
,
Dynamic Response of Human Tibiae Application to Fracture Healing and Osteoporosis
,
University of California
,
Berkeley, CA
.
3.
Van der Perre
,
G.
,
Van Audekercke
,
R.
,
Martens
,
M.
, and
Mulier
,
J. C.
,
1983
, “
Identification of In-Vivo Vibration Modes of Human Tibiae by Modal Analysis
,”
ASME J. Biomech. Eng.
,
105
(
3
), pp.
244
248
.
4.
Sonstegard
,
D. A.
, and
Matthews
,
L. S.
,
1976
, “
Sonic Diagnosis of Bone Fracture Healing—A Preliminary Study
,”
J. Biomech.
,
9
(
11
), pp.
689
694
.
5.
Lowet
,
G.
,
Van Audekercke
,
R.
,
Van der Perre
,
G.
,
Geusens
,
P.
,
Dequeker
,
J.
, and
Lammens
,
J.
,
1993
, “
The Relation Between Resonant Frequencies and Torsional Stiffness of Long Bones In Vivo. Validation of a Simple Beam Model
,”
J. Biomech.
,
26
(
6
), pp.
689
696
.
6.
Christensen
,
A. B.
,
Ammitzboll
,
F.
,
Dyrbye
,
C.
,
Cornelissen
,
M.
,
Cornelissen
,
P.
, and
Van der Perrre
,
G.
,
1986
, “
Assessment of Tibial Stiffness by Vibration Testing In Situ—I: Identification of Mode Shapes in Different Supporting Conditions
,”
J. Biomech.
,
19
(
1
), pp.
53
60
.
7.
Nakatsuchi
,
Y.
,
Tsuchikane
,
A.
, and
Nomura
,
A.
,
1996
, “
The Vibrational Mode of the Tibia and Assessment of Bone Union in Experimental Fracture Healing Using the Impulse Response Method
,”
Medical Eng. Phys.
,
18
(
7
), pp.
575
583
.
8.
Alizad
,
A.
,
Walch
,
M.
,
Greenleaf
,
J. F.
, and
Fatemi
,
M.
,
2006
, “
Vibrational Characteristics of Bone Fracture and Fracture Repair: Application to Excised Rat Femur
,”
ASME J. Biomech. Eng.
,
128
(
3
), pp.
300
308
.
9.
Nokes
,
L.
,
Mintowt-Czyz
,
W. J.
,
Fairclough
,
J. A.
,
Mackie
,
I.
, and
Williams
,
J.
,
1985
, “
Vibration Analysis in the Assessment of Conservatively Managed Tibial Fractures
,”
J. Biomed. Eng.
,
7
(
1
), pp.
40
44
.
10.
Hight
,
T. K.
,
Piziali
,
R. L.
, and
Nagel
,
D. A.
,
1980
, “
Natural Frequency Analysis of a Human Tibia
,”
J. Biomech.
,
13
(
2
), pp.
139
147
.
11.
Collier
,
R. J.
,
Nadav
,
O.
, and
Thomas
,
T. G.
,
1982
, “
The Mechanical Resonances of a Human Tibia: Part I—In Vivo
,”
J. Biomech.
,
15
(
8
), pp.
545
553
.
12.
Thomsen
,
J. J.
,
1990
, “
Modelling Human Tibia Structural Vibrations
,”
J. Biomech.
,
23
(
3
), pp.
215
228
.
13.
Makki Alamdari
,
M.
,
Li
,
J.
, and
Samali
,
B.
,
2014
, “
FRF-Based Damage Localization Method With Noise Suppression Approach
,”
J. Sound Vib.
,
333
(
14
), pp.
3305
3320
.
14.
Banks
,
H. T.
,
Inman
,
D. J.
,
Leo
,
D. J.
, and
Wang
,
Y.
,
1996
, “
An Experimentally Validated Damage Detection Theory in Smart Structures
,”
J. Sound Vib.
,
191
(
5
), pp.
859
880
.
15.
Liu
,
J.
,
Zhang
,
Y.
, and
Yun
,
B.
,
2012
, “
A New Method for Predicting Nonlinear Structural Vibrations Induced by Ground Impact Loading
,”
J. Sound Vib.
,
331
(
9
), pp.
2129
2140
.
16.
Malekian
,
M.
,
Trieu
,
D.
,
Owoc
,
J. S.
, and
Park
,
S. S.
,
2010
, “
Investigation of the Intervertebral Disc and Fused Joint Dynamics Through Experimental Modal Analysis and the Receptance Coupling Method
,”
ASME J. Biomech. Eng.
,
132
(
4
), p.
041004
.
17.
Rade
,
M.
,
2010
, “
Performance of Various Mode Indicator Functions
,”
Shock Vib.
,
17
(
4–5
), pp.
473
482
.
18.
Phillips
,
A. W.
, and
Allemang
,
R. J.
,
2004
, “
The Unified Matrix Polynomial Approach to Understanding Modal Parameter Estimation: An Update
,”
International Conference on Noise and Vibration Engineering,
Leuven, Belgium, Sept. 20–22.
19.
Shih
,
C. Y.
,
Tsuei
,
Y. G.
,
Allemang
,
R. J.
, and
Brown
,
D. L.
,
1988
, “
Complex Mode Indication Function and Its Applications to Spatial Domain Parameter Estimation
,”
Mech. Syst. Signal Process.
,
2
(
4
), pp.
367
377
.
20.
Phillips
,
A. W.
, and
Allemang
,
R. J.
,
1998
, “
The Complex Mode Indicator Function (CMIF) as a Parameter Estimation Method
,”
International Modal Analysis Conference
,
Santa Barabara, CA
, Feb. 2–5, pp.
705
710
.http://semimac.org/wp-content/uploads/2016/01/sem.org-IMAC-XVI-16th-Int-162104-The-Complex-Mode-Indicator-Function-CMIF-as-Parameter-Estimation.pdf
21.
Carne
,
T. G.
,
Griffith
,
D. T.
, and
Casias
,
M. E.
,
2007
, “
Support Conditions for Experimental Modal Analysis
,”
Sound Vib.
,
41
(
6
), pp.
10
16
.http://www.sandv.com/downloads/0706carn.pdf
22.
Utz
,
J. C.
,
Nelson
,
S.
,
O'Toole
,
B. J.
, and
Van Breukelen
,
F.
,
2009
, “
Bone Strength is Maintained After 8 Months of Inactivity in Hibernating Golden-Mantled Fround Squirrels, Spermophilus Lateralis
,”
J. Exp. Biol.
,
212
(
17
), p.
2746
.
23.
Wren
,
J.
,
2009
, “
A Simple Frequency Response Function
,” Prosig, Ltd., Fareham, UK, accessed Nov. 7, 2017, http://blog.prosig.com/2009/10/19/a-simple-frequency-response-function/
24.
Allemang
,
R. J.
, and
Brown
,
D. L.
,
2006
, “
A Complete Review of the Complex Mode Indicator Function (CMIF) With Applications
,”
International Conference on Noise and Vibration Engineering (ISMA),
Heverlee, Belgium, Sept. 18–20.
25.
Inman
,
D. J.
,
2014
,
Engineering Vibration
, 4th ed.,
University of Michigan
, Ann Arbor, MI.
26.
Shih
,
C. Y.
,
Tsuei
,
Y. G.
,
Allemang
,
R. J.
, and
Brown
,
D. L.
,
1988
, “
A Frequency Domain Global Parameter Estimation Method for Multiple Reference Frequency Response Measurements
,”
Mech. Syst. Signal Process.
,
2
(
4
), pp.
349
365
.
27.
Mahmoud
,
A. A.
,
Abdelghany
,
S. M.
, and
Ewis
,
K. M.
,
2013
, “
Free Vibration of Uniform and Non-Uniform Euler Beams Using the Differential Transformation Method
,”
Asian J. Math. Appl.
,
2013
, p.
ama0097
.http://scienceasia.asia/index.php/ama/article/view/97
28.
Choucair
,
I.
,
Mustapha
,
S.
,
Fakhreddine
,
A.
,
Sayegh
,
M.
, and
Hamade
,
R. F.
,
2016
, “
Investigation of the Dynamic Characteristics of Bovine Tibia Using the Impulse Response Method
,”
ASME
Paper No. IMECE2016-66554
.
29.
Yassine
,
R.
,
Elham
,
M. K.
,
Mustapha
,
S.
, and
Hamade
,
R.
,
2018
, “
Heterogeneous Versus Homogeneous Material Considerations in Determining the Modal Frequencies of Long Tibia Bones
,”
ASME J. Med. Diagn.
,
1
(
2
), p.
021001
.
You do not currently have access to this content.