The correlation between the nonlinear acousto-ultrasonic response and the progressive accumulation of fatigue damage is investigated for an additively manufactured aluminum alloy AlSi7Mg and compared with the behavior of a conventional wrought aluminum alloy 6060-T5. A dual transducer and wedge setup is employed to excite a 30-cycle Hann-windowed tone burst at a center frequency of 500 kHz in plate-like specimens that are 7.2 mm thick. This choice of frequency-thickness is designed to excite the symmetric Lamb mode s1, which, in turn, generates a second-harmonic s2 mode in the presence of distributed material nonlinearity. This s1-s2 mode pair satisfies the conditions for internal resonance, thereby leading to a cumulative build-up of amplitude for the second-harmonic s2 mode with increasing propagation distance. Measurements of a nonlinearity parameter β derived from the second-harmonic amplitude are plotted against propagation distance at various fractions of fatigue life under constant amplitude loading, for three different stress levels corresponding to low-cycle fatigue (LCF), high-cycle fatigue (HCF), and an intermediate case. The results show both qualitative and quantitative differences between LCF and HCF, and between the additively manufactured specimens and the wrought alloy. The potential use of this nonlinearity parameter for monitoring the early stages of fatigue damage accumulation, and hence for predicting the residual fatigue life, is discussed, as well as the potential for quality control of the additive manufacturing (AM) process.

References

1.
Pruell
,
C.
,
Kim
,
J.-Y.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2007
, “
Evaluation of Plasticity Driven Material Damage Using Lamb Waves
,”
Appl. Phys. Lett.
,
91
(
23
), p.
231911
.
2.
Bermes
,
C.
,
Kim
,
J.-Y.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2007
, “
Experimental Characterization of Material Nonlinearity Using Lamb Waves
,”
Appl. Phys. Lett.
,
90
(
2
), p.
021901
.
3.
Nagy
,
P. B.
,
1998
, “
Fatigue Damage Assessment by Nonlinear Ultrasonic Materials Characterization
,”
Ultrasonics
,
36
(
1–5
), pp.
375
381
.
4.
Dace
,
G.
,
Thompson
,
R. B.
,
Brasche
,
L. J.
,
Rehbein
,
D. K.
, and
Buck
,
O.
,
1991
, “
Nonlinear Acoustics, a Technique to Determine Microstructural Changes in Materials
,” Review of Progress in Quantitative Nondestructive Evaluation, D.O. Thompson and D. E. Chimenti, eds., Vol. 10B, Springer, Boston, MA, pp. 1685--1692.
5.
Nazarov
,
V. E.
, and
Sutin
,
A. M.
,
1997
, “
Nonlinear Elastic Constants of Solids With Cracks
,”
J. Acoust. Soc. Am.
,
102
(
6
), pp.
3349
3354
.
6.
Liu
,
Y.
,
Lissenden
,
C. J.
, and
Rose
,
J. L.
,
2014
, “
Microstructural Characterization in Plates Using Guided Wave Third Harmonic Generation
,”
AIP Conf. Proc.
,
1581
(
1
), pp.
639
645
.
7.
Liu
,
Y.
,
Chillara
,
V. K.
,
Lissenden
,
C. J.
, and
Rose
,
J. L.
,
2013
, “
Third Harmonic Shear Horizontal and Rayleigh Lamb Waves in Weakly Nonlinear Plates
,”
J. Appl. Phys.
,
114
(
11
), p.
114908
.
8.
Liu
,
Y.
,
Chillara
,
V. K.
, and
Lissenden
,
C. J.
,
2013
, “
On Selection of Primary Modes for Generation of Strong Internally Resonant Second Harmonics in Plate
,”
J. Sound Vib.
,
332
(
19
), pp.
4517
4528
.
9.
Kim
,
J.-Y.
,
Jacobs
,
L. J.
,
Qu
,
J.
, and
Littles
,
J. W.
,
2006
, “
Experimental Characterization of Fatigue Damage in a Nickel-Base Superalloy Using Nonlinear Ultrasonic Waves
,”
J. Acoust. Soc. Am.
,
120
(
3
), pp.
1266
1273
.
10.
Herrmann
,
J.
,
Kim
,
J.-Y.
,
Jacobs
,
L. J.
,
Qu
,
J.
,
Littles
,
J. W.
, and
Savage
,
M. F.
,
2006
, “
Assessment of Material Damage in a Nickel-Base Superalloy Using Nonlinear Rayleigh Surface Waves
,”
J. Appl. Phys.
,
99
(
12
), p.
124913
.
11.
Cantrell
,
J. H.
, and
Yost
,
W. T.
,
2001
, “
Nonlinear Ultrasonic Characterization of Fatigue Microstructures
,”
Int. J. Fatigue
,
23
(
1
), pp.
487
490
.
12.
Liu
,
S.
,
Best
,
S.
,
Neild
,
S. A.
,
Croxford
,
A. J.
, and
Zhou
,
Z.
,
2012
, “
Measuring Bulk Material Nonlinearity Using Harmonic Generation
,”
NDT E Int.
,
48
, pp.
46
53
.
13.
Barnard
,
D. J.
,
Brasche
,
L. J. H.
,
Raulerson
,
D.
, and
Degtyar
,
A. D.
,
2003
, “
Monitoring Fatigue Damage Accumulation With Rayleigh Wave Harmonic Generation Measurements
,”
AIP Conf. Proc.
,
657
(
1
), pp.
1393
1400
.
14.
Frouin
,
J.
,
Sathish
,
S.
,
Matikas
,
T. E.
, and
Na
,
J. K.
,
2011
, “
Ultrasonic Linear and Nonlinear Behavior of Fatigued Ti–6Al–4V
,”
J. Mater. Res.
,
14
(
04
), pp.
1295
1298
.
15.
Na
,
J. K.
,
Cantrell
,
J. H.
, and
Yost
,
W. T.
,
1996
, “
Linear and Nonlinear Ultrasonic Properties of Fatigued 410Cb Stainless Steel
,”
Review of Progress in Quantitative Nondestructive Evaluation
,
D.O.
Thompson
and
D. E.
Chimenti
, eds., Vol.
15A
,
Springer
,
Boston, MA
, pp.
1347
1352
.
16.
Deng
,
M.
,
1999
, “
Cumulative Second-Harmonic Generation of Lamb-Mode Propagation in a Solid Plate
,”
J. Appl. Phys.
,
85
(
6
), pp.
3051
3058
.
17.
Deng
,
M.
,
2003
, “
Analysis of Second-Harmonic Generation of Lamb Modes Using a Modal Analysis Approach
,”
J. Appl. Phys.
,
94
(
6
), pp.
4152
4159
.
18.
Lee
,
T.-H.
,
Choi
,
I.-H.
, and
Jhang
,
K.-Y.
,
2008
, “
The Nonlinearity of Guided Wave in an Elastic Plate
,”
Mod. Phys. Lett. B
,
22
(
11
), pp.
1135
1140
.
19.
Matsuda
,
N.
, and
Biwa
,
S.
,
2011
, “
Phase and Group Velocity Matching for Cumulative Harmonic Generation in Lamb Waves
,”
J. Appl. Phys.
,
109
(
9
), p.
094903
.
20.
Müller
,
M. F.
,
Kim
,
J.-Y.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2010
, “
Characteristics of Second Harmonic Generation of Lamb Waves in Nonlinear Elastic Plates
,”
J. Acoust. Soc. Am.
,
127
(
4
), pp.
2141
2152
.
21.
Xiang
,
Y.
,
Zhu
,
W.
,
Deng
,
M.
,
Xuan
,
F.-Z.
, and
Liu
,
C.-J.
,
2016
, “
Generation of Cumulative Second-Harmonic Ultrasonic Guided Waves With Group Velocity Mismatching: Numerical Analysis and Experimental Validation
,”
EPL (Europhys. Lett.)
,
116
(
3
), p.
34001
.
22.
Deng
,
M.
,
Xiang
,
Y.
, and
Liu
,
L.
,
2011
, “
Time-Domain Analysis and Experimental Examination of Cumulative Second-Harmonic Generation by Primary Lamb Wave Propagation
,”
J. Appl. Phys.
,
109
(
11
), p.
113525
.
23.
Wu-Jun
,
Z.
,
Ming-Xi
,
D.
,
Yan-Xun
,
X.
,
Fu-Zhen
,
X.
, and
Chang-Jun
,
L.
,
2016
, “
Second Harmonic Generation of Lamb Wave in Numerical Perspective
,”
Chin. Phys. Lett.
,
33
(
10
), p.
104301
.
24.
Liu
,
Y.
,
Kim
,
J.-Y.
,
Jacobs
,
L. J.
,
Qu
,
J.
, and
Li
,
Z.
,
2012
, “
Experimental Investigation of Symmetry Properties of Second Harmonic Lamb Waves
,”
J. Appl. Phys.
,
111
(
5
), p.
053511
.
25.
Mingxi
,
D.
,
Ping
,
W.
, and
Xiafu
,
L.
,
2005
, “
Experimental Observation of Cumulative Second-Harmonic Generation of Lamb-Wave Propagation in an Elastic Plate
,”
J. Phys. D: Appl. Phys.
,
38
(
2
), p.
344
.
26.
Zuo
,
P.
,
Zhou
,
Y.
, and
Fan
,
Z.
,
2016
, “
Numerical and Experimental Investigation of Nonlinear Ultrasonic Lamb Waves at Low Frequency
,”
Appl. Phys. Lett.
,
109
(
2
), p.
021902
.
27.
Hikata
,
A.
,
Chick
,
B. B.
, and
Elbaum
,
C.
,
1965
, “
Dislocation Contribution to the Second Harmonic Generation of Ultrasonic Waves
,”
J. Appl. Phys.
,
36
(
1
), pp.
229
236
.
28.
Hikata
,
A.
, and
Elbaum
,
C.
,
1966
, “
Generation of Ultrasonic Second and Third Harmonics Due to Dislocations—I
,”
Phys. Rev.
,
144
(
2
), pp.
469
477
.
29.
Cantrell
,
J. H.
,
2004
, “
Substructural Organization, Dislocation Plasticity and Harmonic Generation in Cyclically Stressed Wavy Slip Metals
,”
Proc. R. Soc. London. Ser. A: Math., Phys. Eng. Sci.
,
460
(
2043
), pp.
757
780
.
30.
de Lima
,
W. J. N.
, and
Hamilton
,
M. F.
,
2003
, “
Finite-Amplitude Waves in Isotropic Elastic Plates
,”
J. Sound Vib.
,
265
(
4
), pp.
819
839
.
31.
Deng
,
M.
, and
Xiang
,
Y.
,
2015
, “
Analysis of Second-Harmonic Generation by Primary Ultrasonic Guided Wave Propagation in a Piezoelectric Plate
,”
Ultrasonics
,
61
, pp.
121
125
.
32.
Pruell
,
C.
,
Kim
,
J.-Y.
,
Qu
,
J.
, and
J. Jacobs
,
L.
,
2009
, “
Evaluation of Fatigue Damage Using Nonlinear Guided Waves
,”
Smart Mater. Struct.
,
18
(
3
), p.
035003
.
33.
Matlack
,
K. H.
,
Kim
,
J. Y.
,
Jacobs
,
L. J.
, and
Qu
,
J.
,
2011
, “
On the Efficient Excitation of Second Harmonic Generation Using Lamb Wave Modes
,”
AIP Conf. Proc.
,
1335
(
1
), pp.
291
297
.
34.
Deng
,
M.
,
Wang
,
P.
,
Lv
,
X.
,
Xiang
,
Y.
, and
Zhu
,
W.
,
2017
, “
Influence of Change in Inner Layer Thickness of Composite Circular Tube on Second-Harmonic Generation by Primary Circumferential Ultrasonic Guided Wave Propagation
,”
Chin. Phys. Lett
,
34
(
6
), p.
064302
.
35.
Zhao
,
J.
,
Chillara
,
V. K.
,
Ren
,
B.
,
Cho
,
H.
,
Qiu
,
J.
, and
Lissenden
,
C. J.
,
2016
, “
Second Harmonic Generation in Composites: Theoretical and Numerical Analyses
,”
J. Appl. Phys.
,
119
(
6
), p.
064902
.
36.
Rauter
,
N.
,
Lammering
,
R.
, and
Kühnrich
,
T.
,
2016
, “
On the Detection of Fatigue Damage in Composites by Use of Second Harmonic Guided Waves
,”
Compos. Struct.
,
152
, pp.
247
258
.
37.
Rauter
,
N.
, and
Lammering
,
R.
,
2015
, “
Investigation of the Higher Harmonic Lamb Wave Generation in Hyperelastic Isotropic Material
,”
Phys. Procedia
,
70
, pp.
309
313
.
38.
Matlack
,
K.
,
Kim
,
J.-Y.
,
Jacobs
,
L.
, and
Qu
,
J.
,
2015
, “
Review of Second Harmonic Generation Measurement Techniques for Material State Determination in Metals
,”
J. Nondestr. Eval.
,
34
(
1
), p.
273
.
39.
Chillara
,
V. K.
, and
Lissenden
,
C. J.
,
2016
, “
Review of Nonlinear Ultrasonic Guided Wave Nondestructive Evaluation: Theory, Numerics, and Experiments
,”
Opt. Eng.
,
55
(
1
), p.
011002
.
40.
Everton
,
S. K.
,
Hirsch
,
M.
,
Stravroulakis
,
P.
,
Leach
,
R. K.
, and
Clare
,
A. T.
,
2016
, “
Review of in-Situ Process Monitoring and in-Situ Metrology for Metal Additive Manufacturing
,”
Mater. Des.
,
95
, pp.
431
445
.
41.
Zhang
,
B.
,
Liao
,
H.
, and
Coddet
,
C.
,
2012
, “
Effects of Processing Parameters on Properties of Selective Laser Melting Mg–9% Al Powder Mixture
,”
Mater. Des.
,
34
, pp.
753
758
.
42.
Waller
,
J. M.
,
Parker
,
B. H.
,
Hodges
,
K. L.
,
Burke
,
E. R.
, and
Walker
,
J. L.
,
2014
, “
Nondestructive Evaluation of Additive Manufacturing State-of-the-Discipline Report
,” National Aeronautics and Space Administration, Washington, DC, Technical Report No.
NASA/TM-2014-218560
.https://ntrs.nasa.gov/search.jsp?R=20140016447
43.
Brandl
,
E.
,
Heckenberger
,
U.
,
Holzinger
,
V.
, and
Buchbinder
,
D.
,
2012
, “
Additive Manufactured AlSi10 Mg Samples Using Selective Laser Melting (SLM): Microstructure, High Cycle Fatigue, and Fracture Behavior
,”
Mater. Des.
,
34
, pp.
159
169
.
44.
Aboulkhair
,
N. T.
,
Everitt
,
N. M.
,
Ashcroft
,
I.
, and
Tuck
,
C.
,
2014
, “
Reducing Porosity in AlSi10 Mg Parts Processed by Selective Laser Melting
,”
Addit. Manuf.
, 1--4, pp.
77
86
.
45.
Wang
,
H.
,
Davidson
,
C. J.
, and
StJohn
,
D. H.
,
2004
, “
Semisolid Microstructural Evolution of AlSi7Mg Alloy During Partial Remelting
,”
Mater. Sci. Eng.: A
,
368
(
1–2
), pp.
159
167
.
46.
Martin
,
J. H.
,
Yahata
,
B. D.
,
Hundley
,
J. M.
,
Mayer
,
J. A.
,
Schaedler
,
T. A.
, and
Pollock
,
T. M.
,
2017
, “
3D Printing of High-Strength Aluminum Alloys
,”
Nature
,
549
(
7672
), pp.
365
369
.
47.
Lu
,
Q. Y.
, and
Wong
,
C. H.
,
2017
, “
Additive Manufacturing Process Monitoring and Control by Non-Destructive Testing Techniques: Challenges and in-Process Monitoring
,”
Virtual Phys. Prototyping
, 13(2), pp. 39--48.
48.
Clark
,
D.
,
Sharples
,
S. D.
, and
Wright
,
D. C.
,
2011
, “
Development of Online Inspection for Additive Manufacturing Products
,”
Insight—Non-Destructive Test. Condition Monit.
,
53
(
11
), pp.
610
613
.
49.
Rieder
,
H.
,
Dillhöfer
,
A.
,
Spies
,
M.
,
Bamberg
,
J.
, and
Hess
,
T.
,
2014
, “
Online Monitoring of Additive Manufacturing Processes Using Ultrasound
,”
11th European Conference on Non-Destructive Testing
(
ECNDT
), Prague, Czech Republic, Oct. 6–10, pp. 1–7.https://www.ndt.net/events/ECNDT2014/app/content/Paper/259_Spies.pdf
50.
Sharratt
,
B. M.
,
2015
, “
Non-Destructive Techniques and Technologies for Qualification of Additive Manufactured Parts and Processes
,” Sharratt Research and Consulting Inc., Victoria, BC, Technical Report No.
DRDC-RDDC-2015-C035
. http://cradpdf.drdc-rddc.gc.ca/PDFS/unc200/p801800_A1b.pdf
51.
Rudlin
,
J.
,
Cerniglia
,
D.
,
Scafidi
,
M.
, and
Schneider
,
C.
,
2014
, “
Inspection of Laser Powder Deposited Layers
,”
11th European Conference on Non-Destructive Testing
(
ECNDT
), Prague, Czech Republic, Oct 6–10, pp. 1–7. https://www.ndt.net/events/ECNDT2014/app/content/Paper/55_Rudlin.pdf
52.
Everton
,
S.
,
Dickens
,
P.
,
Tuck
,
C.
,
Dutton
,
B.
, and
Wimpenny
,
D.
, 2017, “
The Use of Laser Ultrasound to Detect Defects in Laser Melted Parts
,”
TMS 2017 146th Annual Meeting & Exhibition
, San Diego, CA, Feb. 26–Mar. 2, pp.
105
116
.
53.
Pavlakovic, B., Lowe, M. J. S., Alleyne, D., and Cawley, P., 1997, Disperse: A General Purpose Program for Creating Dispersion Curves (Review of Progress in Quantitative Nondestructive Evaluation, Vol. 16), D. Thompson and D. Chimenti, eds., Springer, Boston, MA, pp. 185--192.
54.
Liu
,
M.
,
Wang
,
K.
,
Lissenden
,
C. J.
,
Wang
,
Q.
,
Zhang
,
Q.
,
Long
,
R.
,
Su
,
Z.
, and
Cui
,
F.
, “
Characterizing Hypervelocity Impact (HVI)-Induce Pitting Damage Using Active Guided Ultrasonic Waves: From Linear to Nonlinear
,”
Materials
,
10
(
5
), p.
547
.
55.
Deng
,
M.
, and
Pei
,
J.
,
2007
, “
Assessment of Accumulated Fatigue Damage in Solid Plates Using Nonlinear Lamb Wave Approach
,”
Appl. Phys. Lett.
,
90
(
12
), p.
121902
.
56.
Thijs
,
L.
,
Kempen
,
K.
,
Kruth
,
J.-P.
, and
Van Humbeeck
,
J.
,
2013
, “
Fine-Structured Aluminum Products With Controllable Texture by Selective Laser Melting of Pre-Alloyed AlSi10 Mg Powder
,”
Acta Mater.
,
61
(
5
), pp.
1809
1819
.
57.
Louvis
,
E.
,
Fox
,
P.
, and
Sutcliffe
,
C. J.
,
2011
, “
Selective Laser Melting of Aluminum Components
,”
J. Mater. Process. Technol.
,
211
(
2
), pp.
275
284
.
58.
Lukas
,
P.
,
1996
,
Fatigue Crack Nucleation and Microstructure
(Fatigue and Fracture, Vol.
19
),
ASM International Handbook Committee
, Materials Park, OH, pp.
96
109
.
59.
Hertzberg
,
R. W.
,
1996
,
Deformation and Fracture Mechanics of Engineering Materials
,
Wiley
, 4th ed., Hoboken, NJ.
60.
Schijve
,
J.
,
1994
, “
Fatigue Predictions and Scatter
,”
Fatigue Fract. Eng. Mater. Struct.
,
17
(
4
), pp.
381
396
.
61.
Schijve
,
J.
,
2001
, “
Fatigue as a Phenomenon in the Material
,” Fatigue of Structures and Materials, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp.
7
44
.
You do not currently have access to this content.