Delivering foreign molecules into human cells is a wide and ongoing area of research. Gene therapy, or delivering nucleic acids into cells via nonviral or viral pathways, is an especially promising area for pharmaceutics. All gene therapy methods have their respective advantages and disadvantages, including limited delivery efficiency and low viability. We present an electromechanical method for delivering foreign molecules into human cells. Nanoinjection, or delivering molecules into cells using a solid lance, has proven to be highly efficient while maintaining high viability levels. This paper describes an array of solid silicon microlances that was tested to determine efficiency and viability when nanoinjecting tens of thousands of HeLa cells simultaneously. Propidium iodide (PI), a dye that fluoresces when bound to nucleic acids and does not fluoresce when unbound, was delivered into cells using the lance array. Results show that the lance array delivers PI into up to 78% of a nanoinjected HeLa cell culture, while maintaining 78–91% viability. With these results, we submit the nanoinjection method using a silicon lance array as another promising particle delivery method for mammalian culture cells.

References

1.
Mancuso
,
K.
,
Hauswirth
,
W. W.
,
Li
,
Q.
,
Connor
,
T. B.
,
Kuchenbecker
,
J. A.
,
Mauck
,
M. C.
,
Neitz
,
J.
, and
Neitz
,
M.
,
2009
, “
Gene Therapy for Redgreen Colour Blindness in Adult Primates
,”
Nature
,
461
(
7265
), pp.
784
787
.10.1038/nature08401
2.
Luo
,
D.
, and
Saltzman
,
W. M.
,
2000
, “
Synthetic DNA Delivery Systems
,”
Nat. Biotechnol.
,
18
(
1
), pp.
33
37
.10.1038/78523
3.
Mehier-Humbert
,
S.
, and
Guy
,
R. H.
,
2005
, “
Physical Methods for Gene Transfer: Improving the Kinetics of Gene Delivery Into Cells
,”
Adv. Drug Delivery Rev.
,
57
(
5
), pp.
733
753
.10.1016/j.addr.2004.12.007
4.
Mellott
,
A. J.
,
Forrest
,
M. L.
, and
Detamore
,
M. S.
,
2013
, “
Physical Non-Viral Gene Delivery Methods for Tissue Engineering
,”
Ann. Biomed. Eng.
,
41
(
3
), pp.
446
468
.10.1007/s10439-012-0678-1
5.
Li
,
G.-B.
, and
Lu
,
G.-X.
,
2009
, “
Gene Delivery Efficiency in Bone Marrow-Derived Dendritic Cells: Comparison of Four Methods and Optimization for Lentivirus Transduction
,”
Mol. Biotechnol.
,
43
(
3
), pp.
250
256
.10.1007/s12033-009-9197-1
6.
Cao
,
F.
,
Xie
,
X.
,
Gollan
,
T.
,
Zhao
,
L.
,
Narsinh
,
K.
,
Lee
,
R. J.
, and
Wu
,
J. C.
,
2010
, “
Comparison of Gene-Transfer Efficiency in Human Embryonic Stem Cells
,”
Mol. Imaging Biol.
,
12
(
1
), pp.
15
24
.10.1007/s11307-009-0236-x
7.
Auerbach
,
A. B.
,
2004
, “
Alternative Methods to Pronuclear Microinjections for Random Transgene Integration in Mouse
,”
Transgenics
,
4
, pp.
169
187
.
8.
Patil
,
S. D.
,
Rhodes
,
D. G.
, and
Burgess
,
D. J.
,
2005
, “
DNA-Based Therapeutics and DNA Delivery Systems: A Comprehensive Review
,”
AAPS J.
,
7
(
1
), pp.
E61
E77
.10.1208/aapsj070109
9.
Pushpendra
,
S.
,
Arvind
,
P.
, and
Anil
,
B.
,
2012
,
From Nucleic Acids Sequences to Molecular Medicine
,
RNA Technologies, Springer
, Berlin, Germany.
10.
Chrenek
,
P.
,
Vasicek
,
D.
,
Makarevich
,
A. V.
,
Jurcik
,
R.
,
Suvegova
,
K.
,
Parkanyi
,
V.
,
Bauer
,
M.
,
Rafay
,
J.
,
Batorova
,
A.
, and
Paleyanda
,
R. K.
,
2005
, “
Increased Transgene Integration Efficiency Upon Microinjection of DNA Into Both Pronuclei of Rabbit Embryos
,”
Transgenic Res.
,
14
(
4
), pp.
417
428
.10.1007/s11248-005-3238-8
11.
Iversen
,
N.
,
Birkenes
,
B.
,
Torsdalen
,
K.
, and
Djurovic
,
S.
,
2005
, “
Electroporation by Nucleofector is the Best Nonviral Transfection Technique in Human Endothelial and Smooth Muscle Cells
,”
Genet. Vaccines Ther.
,
3
(
2
), pp.
1
13
.10.1186/1479-0556-3-2
12.
Chang
,
D. C.
,
1992
,
Guide to Electroporation and Electrofusion
,
Academic Press, Inc
, Waltham, MA.
13.
Kiefer
,
K.
,
Clement
,
J.
,
Garidel
,
P.
, and
Peschka-Sss
,
R.
,
2004
, “
Transfection Efficiency and Cytotoxicity of Nonviral Gene Transfer Reagents in Human Smooth Muscle and Endothelial Cells
,”
Pharm. Res.
,
21
(
6
), pp.
1009
1017
.10.1023/B:PHAM.0000029291.62615.ec
14.
Yamano
,
S.
,
Dai
,
J.
, and
Moursi
,
A. M.
,
2010
, “
Comparison of Transfection Efficiency of Nonviral Gene Transfer Reagents
,”
Mol. Biotechnol.
,
46
(
3
), pp.
287
300
.10.1007/s12033-010-9302-5
15.
Arnold
,
A.-S.
,
Laporte
,
V.
,
Dumont
,
S.
,
Appert-Collin
,
A.
,
Erbacher
,
P.
,
Coupin
,
G.
,
Levy
,
R.
,
Poindron
,
P.
, and
Gies
,
J.-P.
,
2005
, “
Comparing Reagents for Efficient Transfection of Human Primary Myoblasts: FuGENE 6, Effectene and ExGen 500
,”
Fundam. Clin. Pharmacol.
,
20
(
1
), pp.
81
89
.10.1111/j.1472-8206.2005.00344.x
16.
Breunig
,
M.
,
Lungwitz
,
U.
,
Liebl
,
R.
, and
Goepferich
,
A.
,
2007
, “
Breaking up the Correlation Between Efficacy and Toxicity for Nonviral Gene Delivery
,”
Proc. Natl. Acad. Sci. U.S.A.
,
104
(
36
), pp.
14454
14459
.10.1073/pnas.0703882104
17.
Aten
,
Q. T.
,
Jensen
,
B. D.
,
Burnett
,
S. H.
, and
Howell
,
L. L.
,
2011
, “
Electrostatic Accumulation and Release of DNA Using a Micromachined Lance
,”
J. Microelectromech. Syst.
,
20
(
6
), pp.
1449
1461
.10.1109/JMEMS.2011.2167658
18.
Aten
,
Q. T.
,
Jensen
,
B. D.
,
Tamowski
,
S.
,
Wilson
,
A. M.
,
Howell
,
L. L.
, and
Burnett
,
S. H.
,
2012
, “
Nanoinjection: Pronuclear DNA Delivery Using a Charged Lance
,”
Transgenic Res.
,
21
(
6
), pp.
1279
1290
.10.1007/s11248-012-9610-6
19.
Wilson
,
A. M.
,
Aten
,
Q. T.
,
Toone
,
N. C.
,
Black
,
J. L.
,
Jensen
,
B. D.
,
Tamowski
,
S.
,
Howell
,
L. L.
, and
Burnett
,
S. H.
,
2013
, “
Transgene Delivery via Intracellular Electroporetic Nanoinjection
,”
Transgenic Res.
,
22
(
5
), pp.
993
1002
.10.1007/s11248-013-9706-7
20.
Marchington
,
R. F.
,
Arita
,
Y.
,
Tsampoula
,
X.
,
Gunn-Moore
,
F. J.
, and
Dholakia
,
K.
,
2010
, “
Optical Injection of Mammalian Cells Using a Microfluidic Platform
,”
Biomed. Opt. Express
,
1
(
2
), pp.
527
536
.10.1364/BOE.1.000527
21.
Xie
,
X.
,
Xu
,
A. M.
,
Leal-Ortiz
,
S.
,
Cao
,
Y.
,
Garner
,
C. C.
, and
Melosh
,
N. A.
,
2013
, “
Nanostrawelectroporation System for Highly Efficient Intracellular Delivery and Transfection
,”
ACS Nano
,
7
(
5
), pp.
4351
4358
.10.1021/nn400874a
22.
Teichert
,
G. H.
,
Burnett
,
S. H.
, and
Jensen
,
B. D.
,
2013
, “
A Microneedle Array Able to Inject Tens of Thousands of Cells Simultaneously
,”
J. Micromech. Microeng.
,
23
(
9
), p.
095003
.10.1088/0960-1317/23/9/095003
23.
Teichert
,
G. H.
, and
Jensen
,
B. D.
,
2013
, “
Design and Fabrication of a Fully-Compliant Mechanism for Control of Cellular Injection Arrays
,”
Prod. Eng.
,
7
(
5
), pp.
561
568
.10.1007/s11740-013-0475-1
24.
Parise
,
J. J.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2001
, “
Ortho-Planar Linear-Motion Springs
,”
Mech. Mach. Theory
,
36
(
11–12
), pp.
1281
1299
.10.1016/S0094-114X(01)00051-9
25.
Arndt-Jovin
,
D. J.
, and
Jovin
,
T. M.
,
1989
, “
Fluorescence Microscopy of Living Cells in Culture Part B. Quantitative Fluorescence Microscopy—Imaging and Spectroscopy
,” Methods in Cell Biology, Vol. 30, Academic Press, Waltham, MA, pp. 417–448.
26.
Neumeyer
,
A.
,
Bukowski
,
M.
,
Veith
,
M.
,
Lehr
,
C.-M.
, and
Daum
,
N.
,
2011
, “
Propidium Iodide Labeling of Nanoparticles as a Novel Tool for the Quantification of Cellular Binding and Uptake
,”
Nanomedicine
,
7
(
4
), pp.
410
419
.10.1016/j.nano.2010.12.007
27.
Rieger
,
A. M.
,
Hall
,
B. E.
,
Luong
,
L. T.
,
Schang
,
L. M.
, and
Barreda
,
D. R.
,
2010
, “
Conventional Apoptosis Assays Using Propidium Iodide Generate a Significant Number of False Positives That Prevent Accurate Assessment of Cell Death
,”
Journal of Immunol. Meth.
,
358
(
1–2
), pp.
81
92
.10.1016/j.jim.2010.03.019
28.
Deitch
,
A. D.
,
Law
,
H.
, and
deVere White
,
R.
,
1982
, “
A Stable Propidium Iodide Staining Procedure for Flow Cytometry
,”
J. Histochem. Cytochem.
,
30
(
9
), pp.
967
972
.10.1177/30.9.6182188
29.
Krishan
,
A.
,
1975
, “
Rapid Flow Cytofluorometric Analysis of Mammalian Cell Cycle by Propidium Iodide Staining
,”
J. Cell Biol.
,
66
(
1
), pp.
188
193
.10.1083/jcb.66.1.188
30.
Darzynkiewicz
,
Z.
,
Bruno
,
S.
,
Bino
,
G. D.
,
Gorczyca
,
W.
,
Hotz
,
M.
,
Lassota
,
P.
, and
Traganos
,
F.
,
1992
, “
Features of Apoptotic Cells Measured by Flow Cytometry
,”
Cytometry
,
13
(
8
), pp.
795
808
.10.1002/cyto.990130802
31.
Vermes
,
I.
,
Haanen
,
C.
, and
Reutelingsperger
,
C.
,
2000
, “
Flow Cytometry of Apoptotic Cell Death
,”
J. Immunol. Meth.
,
243
(
1–2
), pp.
167
190
.10.1016/S0022-1759(00)00233-7
32.
Crissman
,
H. A.
, and
Hirons
,
G. T.
,
1994
, “
Flow Cytometry Second Edition, Part A
,” Methods in Cell Biology, Vol. 41, Academic Press, Waltham, MA, pp.
195
209
.10.1016/S0091-679X(08)61718-5
33.
Bank
,
H. L.
,
1987
, “
Assessment of Islet Cell Viability Using Fluorescent Dyes
,”
Diabetologia
,
30
(
10
), pp.
812
816
.10.1007/BF00275748
34.
Meda
,
P.
,
2001
, “
Connexin Methods and Protocols
,” Methods in Cell Biology, Vol. 154, Springer, Berlin, Germany, pp.
201
224
.
35.
Tsong
,
T. Y.
,
1991
, “
Electroporation of Cell Membranes
,”
Biophys. J.
,
60
(
2
), pp.
297
306
.10.1016/S0006-3495(91)82054-9
36.
Pelkmans
,
L.
,
2012
, “
Using Cell-to-Cell Variability - A New Era in Molecular Biology
,”
Science
,
336
(
6080
), pp.
425
426
.10.1126/science.1222161
You do not currently have access to this content.