Abstract

The characteristics such as high hardness and shear modulus, low thermal conductivity, strain hardening of Nickel-based superalloys lead to high machining forces and temperature, poor surface quality and integrity, rapid tool wear, etc. The present article investigates the tool wear mechanism of the tungsten carbide (WC) tool in μ-turning of Nimonic 90 under dry, wet, and vegetable oil-based cutting fluid (VCF). Canola oil is used as vegetable oil. Three different combinations of cutting speed, feed rate, and depth of cut are considered for analysis. The tool wear is characterized using optical and scanning electron microscopy. Machining with VCF shows an approximate reduction of flank wear width in the range of 12–52% compared to dry and wet conditions. The main wear mechanisms observed on the tool flank and rake face are abrasion, built-up edge adhesion, and edge chipping. The VCF considerably reduces the adhesion and abrasion and, hence, increases tool life. The chips produced in dry conditions are found fractured and uneven, whereas, it had an uneven lamella structure in wet conditions. The VCF found reducing the plastic deformation in each cutting condition, as a result, producing fine lamella structured chips.

References

1.
Chae
,
J.
,
Park
,
S. S.
, and
Freiheit
,
T.
,
2006
, “
Investigation of Micro-Cutting Operations
,”
Int. J. Mach. Tool. Manuf.
,
46
(
3–4
), pp.
313
332
.10.1016/j.ijmachtools.2005.05.015
2.
Schneider
,
F.
,
Das
,
J.
,
Kirsch
,
B.
,
Linke
,
B.
, and
Aurich
,
J. C.
,
2019
, “
Sustainability in Ultra Precision and Micro Machining: A Review
,”
Int. J. Prec. Eng. Manuf. Green Technol.
,
6
(
3
), pp.
601
610
.10.1007/s40684-019-00035-2
3.
Vollertsen
,
F.
,
Biermann
,
D.
,
Hansen
,
H. N.
,
Jawahir
,
I. S.
, and
Kuzman
,
K.
,
2009
, “
Size Effects in Manufacturing of Metallic Components
,”
CIRP Ann.-Manuf. Technol.
,
58
(
2
), pp.
566
587
.10.1016/j.cirp.2009.09.002
4.
Nakayama
,
K.
, and
Tamura
,
K.
,
1968
, “
Size Effect in Metal-Cutting Force
,”
ASME J. Eng. Ind.
,
90
(
1
), pp.
119
126
.10.1115/1.3604585
5.
Yuan
,
Z. J.
,
Lee
,
W. B.
,
Yao
,
Y. X.
, and
Zhou
,
M.
,
1994
, “
Effect of Crystallographic Orientation on Cutting Forces and Surface Quality in Diamond Cutting of Single Crystal
,”
CIRP Ann.
,
43
(
1
), pp.
39
42
.10.1016/S0007-8506(07)62159-3
6.
Cui
,
P.
,
Shi
,
Z. Y.
,
Li
,
X.
, and
Duan
,
N. M.
,
2019
, “
Evaluation of Specific Cutting Energy Considering Effects of Cutting Tool Geometry During Micro-Machining Process
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5–8
), pp.
1127
1139
.10.1007/s00170-018-3125-0
7.
Wu
,
X.
,
Li
,
L.
,
Zhao
,
M.
, and
He
,
N.
,
2016
, “
Experimental Investigation of Specific Cutting Energy and Surface Quality Based on Negative Effective Rake Angle in Micro Turning
,”
Int. J. Adv. Manuf. Technol.
,
82
(
9–12
), pp.
1941
1947
.10.1007/s00170-015-7548-6
8.
Jagadesh
,
T.
, and
Samuel
,
G. L.
,
2017
, “
Finite Element Simulations of Micro Turning of Ti-6Al-4V Using PCD and Coated Carbide Tools
,”
J. Inst. Eng. India Ser. C
,
98
(
1
), pp.
5
15
.10.1007/s40032-016-0271-8
9.
Selvakumar
,
S.
,
Sreebalaji
,
V. S.
, and
Ravikumar
,
K.
,
2021
, “
Ravikumar K. Machinability Analysis and Optimization in Micro Turning on Tool Wear for Titanium Alloy
,”
Mater. Manuf. Process.
,
36
(
7
), pp.
792
802
.10.1080/10426914.2020.1866198
10.
Wang
,
Y.
,
Zou
,
B.
, and
Huang
,
C.
,
2019
, “
Tool Wear Mechanisms and Micro-Channels Quality in Micro-Machining ofTi-6Al-4V Alloy Using the Ti(C7N3)-Based Cermet Micro-Mills
,”
Tribo. Int.
,
134
, pp.
60
76
.10.1016/j.triboint.2019.01.030
11.
Ehses
,
S. K.
,
Bohme
,
L.
,
Rivas
,
L. M.
,
Losch
,
J.
,
Kirsch
,
B.
,
Kerscher
,
E.
,
Kopnarski
,
M.
, and
Aurich
,
J. C.
,
2021
, “
The Influence of the Crystallographic Orientation When Micro Machining Commercially Pure Titanium: A Size Effect
,”
Prec. Eng.
,
72
, pp.
158
171
.10.1016/j.precisioneng.2021.04.007
12.
Ji
,
H.
,
Gupta
,
M. K.
,
Song
,
Q.
,
Cai
,
W.
,
Zheng
,
T.
,
Zhao
,
Y.
,
Liu
,
Z.
, and
Pimenov
,
P. Y.
,
2021
, “
Microstructure and Machinability Evaluation in Micro Milling of Selective Laser Melted Inconel 718 Alloy
,”
J. Mater. Res. Technol.
,
14
, pp.
348
362
.10.1016/j.jmrt.2021.06.081
13.
Liao
,
Y.
,
Li
,
T.
, and
Liu
,
Y.
,
2020
, “
An Approach to Improve Cutting Performance in Micro Milling of Titanium Alloy
,”
ASME J. Micro- Nano-Manuf.
,
8
(
2
), p.
024503
.10.1115/1.4046560
14.
Dornfeld
,
D.
, and
Min
,
Y.
,
2006
, “
Takeuchi. Recent Advances in Mechanical Micromachining
,”
Ann. CIRP
,
55
(
2
), pp.
745
768
.10.1016/j.cirp.2006.10.006
15.
Venkatesh
,
V.
,
Swain
,
N.
,
Srinivas
,
G.
,
Kumar
,
P.
, and
Barshilia
,
H. C.
,
2017
, “
Review on the Machining Characteristics and Research Prospects of Conventional Microscale Machining Operations
,”
Mater. Manuf. Process.
,
32
(
3
), pp.
235
262
.10.1080/10426914.2016.1151045
16.
Elias
,
J. V.
,
Venkatesh
,
P. N.
,
Lawrence
,
D. K.
, and
Mathew
,
J.
,
2021
, “
Tool Texturing for Micro-Turning Applications – an Approach Using Mechanical Micro Indentation
,”
Mater. Manuf. Process.
,
36
(
1
), pp.
84
93
.10.1080/10426914.2020.1813899
17.
Huang
,
P.
,
Li
,
H.
,
Zhu
,
W. L.
,
Wang
,
H.
,
Zhang
,
G.
,
Wu
,
X.
,
To
,
S.
, and
Zhu
,
Z.
,
2020
, “
Effects of Eco-Friendly Cooling Strategy on Machining Performance in Micro-Scale Diamond Turning of Ti-6Al-4V
,”
J. Clean. Prod.
,
243
, p.
118526
.10.1016/j.jclepro.2019.118526
18.
Khaliq
,
W.
,
Zhang
,
C.
,
Jamil
,
M.
, and
Khan
,
A. M.
,
2020
, “
Tool Wear, Surface Quality, and Residual Stresses Analysis of Micro-Machined Additive Manufactured Ti–6Al–4V Under Dry and MQL Conditions
,”
Tribo. Int.
,
151
, p.
106408
.10.1016/j.triboint.2020.106408
19.
Vazquez
,
E.
,
Kemmoku
,
D. T.
,
Noritomi
,
P. Y.
,
Silva
,
JVL D.
, and
Ciurana
,
J.
,
2014
, “
Computer Fluid Dynamics Analysis for Efficient Cooling and Lubrication Conditions in Micromilling of Ti6Al4V Alloy
,”
Mater. Manuf. Process.
,
29
(
11–12
), pp.
1494
1501
.10.1080/10426914.2014.941864
20.
Ucun
,
I.
,
Aslantas
,
K.
, and
Bedir
,
F.
,
2015
, “
The Performance Of DLC-Coated and Uncoated Ultra-Fine Carbide Tools in Micro Milling of Inconel 718
,”
Precis. Eng.
,
135
, pp.
135–144
.10.1016/j.precisioneng.2015.01.002
21.
Roushan
,
A.
,
Rao
,
U. S.
,
Patra
,
K.
, and
Sahoo
,
P.
,
2022
, “
Performance Evaluation of Tool Coatings and Nanofluid MQL on the Micro-Machinability of Ti-6Al-4V
,”
J. Manuf. Process.
,
73
, pp.
595
610
.10.1016/j.jmapro.2021.11.030
22.
Soo
,
N. J.
,
Lee
,
P. H.
, and
Lee
,
S. W.
,
2011
, “
Experimental Characterization of Micro-Drilling Process Using Nanofluid Minimum Quantity Lubrication
,”
Int. J. Mach. Tools Manuf.
,
51
(
7–8
), pp.
649
652
.10.1016/j.ijmachtools.2011.04.005
23.
Azim
,
S.
,
Gangopadhyay
,
S.
,
Mahapatra
,
S. S.
,
Mittal
,
R. K.
, and
Singh
,
R. K.
,
2020
, “
Role of PVD Coating on Wear and Surface Integrity During Environment-Friendly Micro-Drilling of Ni-Based Superalloy
,”
J. Clean. Prod.
,
272
, p.
122741
.10.1016/j.jclepro.2020.122741
24.
Kishore
,
H.
,
Nirala
,
C. K.
,
Agrawal
,
A.
, and
Kuriachen
,
B.
,
2021
, “
Assessment of Process Parameters and Performance Enhancement Through a Novel Suction Flushing Technology in RμEDM
,”
Mater. Manuf. Process.
,
36
(
13
), pp.
1476
1488
.10.1080/10426914.2021.1948051
25.
Airao
,
J.
,
Khanna
,
N.
,
Roy
,
A.
, and
Hegab
,
H.
,
2020
, “
Comprehensive Experimental Analysis and Sustainability Assessment of Machining Nimonic 90 Using Ultrasonic-Assisted Turning Facility
,”
Int. J. Adv. Manuf. Technol
,.
109
(
5–6
), pp.
1447
1462
.10.1007/s00170-020-05686-z
26.
Debnath
,
S.
,
Reddy
,
M. M.
, and
Yi
,
Q. S.
,
2014
, “
Environmental Friendly Cutting Fluids and Cooling Techniques in Machining: A Review
,”
J. Clean. Produc.
,
83
, pp.
33
47
.10.1016/j.jclepro.2014.07.071
27.
Przybylski
,
R.
,
Mag
,
T.
,
Eskin
,
N.
, and
McDonald
,
B.
,
2005
, “
Canola Oil
,”
Bailey's
Industrial Oil and Fat Products, Wiley, Hoboken, NJ.10.1002/047167849X.bio004
28.
Airao
,
J.
,
Nirala
,
C. K.
,
Lacalle
,
LNdL.
, and
Khanna
,
N.
,
2021
, “
Tool Wear Analysis During Ultrasonic Assisted Turning of Nimonic-90 Under Dry and Wet Conditions
,”
Metals
,
11
(
8
), p.
1253
.10.3390/met11081253
29.
Wu
,
X.
,
Li
,
L.
,
He
,
N.
,
Zhao
,
G.
,
Jiang
,
F.
, and
Shen
,
J.
,
2018
, “
Study on the Tool Wear and Its Effect of PCD Tool in Micro Milling of Tungsten Carbide
,”
Int. J. Refract. Met. Hard Mater.
,
77
, pp.
61
67
.10.1016/j.ijrmhm.2018.07.010
30.
Stephenson
,
D. A.
, and
Agapiou
,
J. S.
,
1997
,
Metal Cutting Theory and Practice
,
CRC Press
, New York.
31.
Gao
,
Q.
,
Guo
,
G.-y.
, and
Cai
,
M.
,
2021
, “
Wear Mechanism and Experimental Study of a Tool Used for Micro-Milling Single-Crystal Nickel-Based Superalloys
,”
Int. J. Adv. Manuf. Technol.
,
113
(
1–2
), pp.
117
129
.10.1007/s00170-020-06428-x
32.
Ucun
,
İ.
,
Aslantas
,
K.
, and
Bedir
,
F.
,
2013
, “
An Experimental Investigation of the Effect of Coating Material on Tool Wear in Micro Milling of Inconel 718 Super Alloy
,”
Wear
,
300
(
1–2
), pp.
8
19
.10.1016/j.wear.2013.01.103
33.
Trent
,
E. M.
, and
Wright
,
P. K.
,
2000
,
Metal Cutting
,
Butterworth-Heinemann Elsevier
,
Woburn
, MA.
34.
Lawal
,
S. A.
,
2013
, “
A Review of Application of Vegetable Oil-Based Cutting Fluids in Machining Non-Ferrous Metals
,”
Indian J. Sci. Technol
,.
6
(
1
), pp.
1e
3956
.10.17485/ijst/2013/v6i1.22
35.
Akhtar
,
W.
,
Sun
,
J.
,
Sun
,
P.
,
Chen
,
W.
, and
Saleem
,
Z.
,
2014
, “
Tool Wear Mechanisms in the Machining of Nickel Based Superalloys: A Review
,”
Front. Mech. Eng.
,
9
(
2
), pp.
106
119
.10.1007/s11465-014-0301-2
36.
Vipindas
,
K.
, and
Mathew
,
J.
,
2019
, “
Wear Behavior of TiAlN Coated WC Tool During Micro End Milling of Ti-6Al-4V and an Alysis of Surface Roughness
,”
Wear
,
424–425
, pp.
165
182
.10.1016/j.wear.2019.02.018
37.
Bai
,
J.
,
Bai
,
Q.
, and
Tong
,
Z.
,
2018
, “
Experimental and Multiscale Numerical Investigation of Wear Mechanism and Cutting Performance of Polycrystalline Diamond Tools in Micro-End Milling of Titanium Alloy Ti-6Al-4V
,”
Int. J. Refract. Met. Hard Mater.
,
74
, pp.
40
51
.10.1016/j.ijrmhm.2018.03.007
38.
Ezugwu
,
E. O.
,
Wang
,
Z. M.
, and
Machado
,
A. R.
,
1999
, “
The Machinability of Nickel-Based Alloys: A Review
,”
J. Mater. Process. Technol.
,
86
(
1–3
), pp.
1
16
.10.1016/S0924-0136(98)00314-8
39.
Bhatt
,
A.
,
Attia
,
H.
,
Vargas
,
R.
, and
Thomson
,
V.
,
2010
, “
Wear Mechanisms of WC Coated and Uncoated Tools in Finish Turning of Inconel 718
,”
Tribo. Int
,.
43
(
5–6
), pp.
1113
1121
.10.1016/j.triboint.2009.12.053
40.
Mathai
,
G. K.
,
Melkote
,
S. N.
, and
Rosen
,
D. W.
,
2013
, “
Effect of Process Parameters on Burrs Produced in Micromilling of a Thin Nitinol Foil
,”
ASME. J. Micro- Nano-Manuf.
,
1
(
2
), p.
021005
.10.1115/1.4024099
41.
Bai
,
J. X.
,
Bai
,
Q. S.
, and
Tong
,
Z.
,
2017
, “
Multiscale Analyses of Surface Failure Mechanism of Single-Crystal Silicon During Micro-Milling Process
,”
Materials
,
10
(
12
), p.
1424
.10.3390/ma10121424
42.
Santos
,
A. G. D.
,
Silva
,
M. B. D.
, and
Jackson
,
M. J.
,
2018
, “
Tungsten Carbide Micro-Tool Wear When Micro Milling UNS S32205 Duplex Stainless Steel
,”
Wear
,
414–415
, pp.
109
117
.10.1016/j.wear.2018.08.007
43.
Abdelrahman Elkaseer
,
A. M.
,
Dimov
,
S. S.
,
Popov
,
K. B.
, and
Minev
,
R. M.
,
2014
, “
Tool Wear in Micro-Endmilling: Material Microstructure Effects, Modeling, and Experimental Validation
,”
ASME. J. Micro- Nano-Manuf.
,
2
(
4
), p.
044502
.10.1115/1.4028077
44.
Wang
,
Y.
,
Zou
,
B.
,
Wang
,
J.
,
Wu
,
Y.
, and
Huang
,
C.
,
2020
, “
Effect of the Progressive Tool Wear on Surface Topography and Chip Formation in Micro-Milling of Ti–6Al–4V Using Ti(C7N3)-Based Cermet Micro-Mill
,”
Tribo. Int.
,
141
, p.
105900
.10.1016/j.triboint.2019.105900
45.
Korkmaz
,
M. E.
,
Gupta
,
M. K.
,
Boy
,
M.
,
Yaşar
,
N.
,
Krolczyk
,
G. M.
, and
Günay
,
M.
,
2021
, “
Influence of Duplex Jets MQL and nano-MQL Cooling System on Machining Performance of Nimonic 80A
,”
J. Manuf. Process.
,
69
, pp.
112
124
.10.1016/j.jmapro.2021.07.039
You do not currently have access to this content.